首页|基于非结构化数据和CNN-BiLSTM的配电网设备缺陷分析模型构建

基于非结构化数据和CNN-BiLSTM的配电网设备缺陷分析模型构建

扫码查看
为确定配电网设备缺陷等级,提出一种基于非结构化数据和CNN-BiLSTM的配电网设备缺陷自动分析方法.首先,提出本配电网设备缺陷自动分类的整体思路;然后通过采用word2Vec对非结构化数据进行处理,并构建基于注意力机制的CNN-BiLSTM缺陷等级分析模型进行数据分析;最后,仿真验证了上述方法的可行性.结果表明,与单一的CNN和CNN-BiLSTM模型相比,本研究所提方法通过利用注意力机制提高了电力设备缺陷描述文本语义特征中重要信息的权重,继而使分析模型的各项性能指标得到提升,其中Acc准确性指标提升4%~5%,MF1指标提升5%~6%,WF1指标提升3%~4%.由此得出,本缺陷分析模型可精准对电力缺陷描述文本进行缺陷等级分析,具有一定的可行性与有效性.
Analysis model of distribution network equipment based on unstructured data and CNN-BiLSTM
To determine the defect level of distribution network equipment,a method for automatic defect analysis of distribution network equipment based on unstructured data and CNN-BiLSTM is proposed.Firstly,propose the overall idea of automatic classifi-cation of equipment defects in this distribution network;Then,unstructured data is processed using word2Vec and a CNN-BiLSTM defect level analysis model based on attention mechanism is constructed for data analysis;Finally,the feasibility of the above method was verified through simulation.The results showed that compared with a single CNN and CNN BiLSTM model,the proposed method in this study increased the weight of important information in the semantic features of power equipment defect description text by utili-zing attention mechanism,thereby improving the performance indicators of the analysis model.Among them,the accuracy index of Acc was improved by 4%~5%,the MF1 index was improved by 5%~6%,and the WF1 index was improved by 3%~4%.From this,it can be concluded that this defect analysis model can accurately analyze the defect level of power defect description texts,and has certain feasibility and effectiveness.

unstructured datadefects in power equipmentCNN-BiLSTMattention mechanism

王栋、刘宁、杨明杰、赵书函

展开 >

国网甘肃省电力公司信息通信公司,兰州 730000

配电网 电力设备缺陷 CNN-BiLSTM 注意力机制

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(3)
  • 15