首页|基于人工智能算法的电力系统可靠性评估技术

基于人工智能算法的电力系统可靠性评估技术

扫码查看
为了获得更加理想的电力系统可靠性评估效果,研究首先对电力系统稳定评估及决策的基本框架进行了深入分析.研究改进了深度置信网络结构,并利用粒子群算法优化参数.从而构建了智能电力系统可靠性评估模型.实验显示,研究模型的各项性能指标值较其他两种模型均要高,其准确率、安全性、可靠性,以及可靠性与安全性的几何平均数值分别为90.6%、91.38%、90.0%、90.26%.研究模型的可靠性更好,其在四个新场景下的均值为96.89%.综上,基于迁移学习的电力系统评估模型提高模型在新场景下的可靠性,使模型能自适应跟随电网变化,有助于实现对拓扑结构改变较大的电力系统的连续精确在线评价.
Power system reliability evaluation technology based on artificial intelligence algorithm
In order to obtain more ideal effect of power system reliability evaluation,the basic framework of power system stability evaluation and decision-making is analyzed.The structure of deep confidence network is improved and the parameters are optimized by particle swarm optimization algorithm.Thus,the reliability evaluation model of intelligent power system is constructed.Experiments show that the performance indexes of the research model are higher than those of the other two models,and the accuracy,security,relia-bility,and geometric average values of reliability and security are 90.6%,91.38%,90.0%,90.26%,respectively.The reliability of the research model is better,with an average of 96.89%in the four new scenarios.In conclusion,the power system evaluation model based on transfer learning improves the reliability of the model in new scenarios,enables the model to adapt to the changes of the power grid,and helps to realize continuous and accurate online evaluation of the power system with large topological changes.

artificial intelligencetransfer learningelectricitysystemreliability

张栋、杨学鹏、张怀鹏、马丽、王海龙

展开 >

国网宁夏电力有限公司中卫供电公司,宁夏中卫 755000

人工智能 迁移学习 电力 系统 可靠性

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(3)
  • 14