首页|基于轻量化模型的智能配电站房云边协同应用模式研究

基于轻量化模型的智能配电站房云边协同应用模式研究

扫码查看
为了解决电力行业图像智能识别由于云端集中推理模式带来的网络带宽限制和数据传输时延方面的问题,在云边协同应用与人工智能深度学习网络模型轻量化压缩两个方向上进行探索研究和融合应用,通过云边协同架构体系和主流人工智能深度学习网络模型压缩方法进行对比分析,提出了 一种基于参数量化模型压缩的云边协同应用模式,并在实际运行中的智能配电站房中进行现场测试,通过业务应用测试和数据结论验证了该应用模式的可行性,通过该云边协同应用模式实现了云端模型复用,减少了额外开发边端模型的人力物力投入,具有较高的示范和推广价值.
Research on Cloud Edge Collaborative Application Mode of Intelligent Distribution Station Building Based on Lightweight Model
In order to address the issues of network bandwidth limitation and data transmission delay caused by cloud-based cen-tralized inference mode in image intelligent recognition for the power industry,this paper explores and integrates research in two direc-tions:cloud-edge collaborative application and lightweight compression of artificial intelligence deep learning network models.By comparing and analyzing the cloud-edge collaborative architecture system and mainstream artificial intelligence deep learning network model compression methods,a cloud-edge collaborative application mode based on parameter quantization model compression is pro-posed.The feasibility of the application mode is verified by business application alerts and data conclusions through on-site testing in certain intelligent distribution station.The cloud-side model reuse reduces the human and material resources required for developing additional edge-side models,and the on-site application effect demonstrates that this application mode has high demonstration and promotion value.

cloud-edge collaborationmodel compressionedge computingparameter quantizationartificial intelligence(AI)internet of things(IoT)

廖飞龙、刘冰倩、黄建业、郑州、武欣欣、游婷婷

展开 >

国网福建省电力有限公司电力科学研究院 福建,福州 350007

北京国网信通埃森哲信息技术有限公司,北京 100052

云边协同 模型压缩 边缘计算 参数量化 人工智能 物联网

&&&&

闽电财[2023]95号B31304230003

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(3)
  • 15