首页|基于多机器学习模型的变电站调试检修自动测试方法研究

基于多机器学习模型的变电站调试检修自动测试方法研究

扫码查看
为了提高变电站调试检修自动测试方法的智能水平,减少人工运维调试工作,提出一种构建LightGBM机器学习模型对变电站调试检修自动测试结果进行智能分析的方法.首先,构建LightGBM机器学习模型并对其进行参数调优和训练;然后采用变电站调试检修自动测试获取的数据对LightGBM机器学习模型进行测试;同时,构建XGBoost机器学习模型作为实验对照组,采用同样的实验方法对其进行训练与测试;最后,对比两种机器学习模型的综合性能.实验结果表明:LightGBM机器学习模型的拟合效果更好;XGBoost机器学习模型对自动检测方法故障类别预测出错数据的分析正确率最高为90.1%;而LightGBM机器学习模型的判断正确率维持在95%以上,最高达到了 96.9%.可知在对变电站调试检修自动测试结果进行智能分析时,选择的LightGBM机器学习模型都更加适合,性能更稳定,能够实现提高变电站调试检修自动测试方法智能水平的目的.
Human resource data integration system based on Artificial Intelligence
In order to improve the intelligent level of the automatic test method of substation debugging and maintenance and re-duce the manual operation and maintenance debugging work,this paper proposes a method of constructing LightGBM machine learning model for intelligent analysis of the automatic test results of substation debugging and maintenance.Firstly,construct a LightGBM ma-chine learning model and tune and train its parameters;Then,the LightGBM machine learning model is tested using the data obtained from automatic testing of substation debugging and maintenance;Meanwhile,an XGBoost machine learning model was constructed as the experimental control group,and trained and tested using the same experimental method;Finally,compare the comprehensive per-formance of two machine learning models.The experimental results show that the LightGBM machine learning model has better fitting performance;The XGBoost machine learning model has the highest accuracy rate of 90.1%in analyzing the error data of automatic detection method fault category prediction;The judgment accuracy of the LightGBM machine learning model remained above 95%,reaching a maximum of 96.9%.It can be seen that the LightGBM machine learning model selected in this article is more suitable and stable for intelligent analysis of automatic testing results for substation debugging and maintenance,and can achieve the goal of impro-ving the intelligent level of automatic testing methods for substation debugging and maintenance.

multiple machine learning modelssubstationautomatic testinglightGBMXGBoost

程智余、江玉、靳幸福

展开 >

国网安徽省电力有限公司,合肥 230000

安徽送变电工程有限公司,合肥 230000

国网安徽省电力有限公司经济技术研究院,合肥 230000

多机器学习模型 变电站 自动测试 LightGBM XGBoost

国家电网安徽省电力公司科技项目

SGTYHT/21-JS-223

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(3)
  • 15