首页|基于参数优化的ICEEMDAN-MEMS陀螺信号处理研究

基于参数优化的ICEEMDAN-MEMS陀螺信号处理研究

扫码查看
航空飞行器多维智能感知系统极端应用环境中,MEMS陀螺的输出信号中会含有各种噪声,进而影响系统后续的导航任务.为了改善MEMS陀螺输出信号的质量,提出了 一种参数优化的改进的自适应噪声完全集成经验模态分解(ICEEM-DAN)的MEMS陀螺信号滤波方法.首先通过灰狼优化算法(GWO)对ICEEMDAN的参数进行优化;对MEMS陀螺的输出信号进行分解,得到若干个本征模态函数(IMF),并根据排列熵对分量进行划分,并使用递归最小二乘算法(RLS)对混合分量进行滤波;最后将信号重构得到最终信号.对系统实测数据进行处理,分析结果表明:与原始信号相比,降噪后的MEMS陀螺输出信号均方根误差(RMSE)降低了 78.6%,该算法可有效地去除输出信号中的噪声,具备一定的工程应用价值.
Research on ICEEMDAN-MEMS Gyroscopic Signal Processing Based on Parameter Optimization
In extreme application environments of multi-dimensional intelligent perception systems for aircraft,the output signal of MEMS gyroscopes will contain various noises,which will affect the subsequent navigation tasks of the system.In order to improve the quality of MEMS gyroscope output signals,an improved adaptive noise fully integrated empirical mode decomposition(ICEEM-DAN)MEMS gyroscope signal filtering method with parameter optimization is proposed.Firstly,optimize the parameters of ICEEM-DAN using the Grey Wolf Optimization Algorithm(GWO);Decompose the output signal of MEMS gyroscopes to obtain several intrin-sic mode functions(IMFs),divide the components based on permutation entropy,and use recursive least squares algorithm(RLS)to filter the mixed components;Finally,the signal is reconstructed to obtain the final signal.The experimental data of the system was processed,and the analysis results showed that compared with the original signal,the root mean square error(RMSE)of the output signal of the MEMS gyroscope after noise reduction was reduced by 78.6%.This algorithm can effectively remove noise from the out-put signal and has certain engineering application value.

MEMS gyroscopesignal denoisingpermutation entropyrecursive least-squares algorithm

时英元、郭涛、梁颖

展开 >

中北大学电子测试技术国防科技重点实验室,太原 030051

北京航天万源科技有限公司,北京 100000

MEMS陀螺 信号去噪 排列熵 递归最小二乘算法

国家自然科学基金面上项目

52375553

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(4)
  • 14