首页|基于红外图像仪的建筑缺陷检测与识别研究

基于红外图像仪的建筑缺陷检测与识别研究

扫码查看
为了提高对建筑外窗气密性与缺陷的检测及识别,研究利用红外热成像仪采集建筑外窗的红外图像,并对图像进行预处理,最后通过检测程序获得外窗缺陷的检测结果.结果表明,研究模型的最优回归线与理想回归线趋势基本一致,其相关系数R分别为0.997 03、0.997 37、0.997 45、0.997 11.实际检测建筑外窗单位面积空气渗透量与程序检测的相对误差均值为4.038%,表明研究的检测程序具有较高的检测精度.此次研究对降低外窗耗能、提升建筑节能具有一定参考价值.
Research on Detection and recognition of building defects based on infrared imager
In order to improve the detection and recognition of the air tightness and defects of building exterior Windows,infrared thermal imager is used to collect the infrared images of building exterior Windows,and the images are preprocessed.Finally,the de-tection results of exterior window defects are obtained through the detection program.The results show that the trend of the optimal re-gression line and the ideal regression line of the research model are basically the same,and the correlation coefficients R are 0.99703,0.997 37,0.997 45 and 0.997 11,respectively.The mean relative error between the actual air permeability per unit area and the program test is 4.038%,indicating that the proposed test program has high detection accuracy.This study has certain reference value for reducing energy consumption of exterior Windows and improving energy conservation of buildings.

infrared thermal imagingbuilding exterior windowdefect detectiongrayscale processingroberts algorithm

卜伟、崔翔

展开 >

杨凌职业技术学院,陕西杨凌 712100

陕西省建筑科学研究院有限公司,西安 710003

红外热成像 建筑外窗 缺陷检测 灰度化处理 Roberts算法

陕西省教育厅专项科研项目

15JK1843

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(4)
  • 10