首页|基于Hampel-DeepAR模型的浅埋隧道洞口塌方处治变形预测研究

基于Hampel-DeepAR模型的浅埋隧道洞口塌方处治变形预测研究

扫码查看
为评价浅埋隧道洞口段塌方处治后的安全性,基于处治后围岩变形及受力监测数据,采用Hampel滤波器处理数据异常值,结合时间序列预测DeepAR模型,建立Hample-DeepAR数据预测模型,应用于塌方处治后围岩稳定性分析,验证处治措施的有效性.结果表明,Hampel-DeepAR模型对拱顶沉降预测的MAE,MSE,RMSE,R2值分别为0.018 5,0.000 5,0.021 4,0.564 8,相比DeepAR、ARIMA、SVM、LSTM、BP模型具有更高预测精度及更优的预测效果,表明采用Hample滤波器预先处理异常值的必要性,验证了 Hampel-DeepAR模型的适用性.围岩位移及受力预测数值显示,拱顶沉降值为6.58 mm,周边收敛值5.89 mm,拱顶围岩压力值0.186 MPa,钢筋最大应力值152.47 MPa,二衬混凝土最大应力值1.73 MPa,处治后围岩稳定性得到较大提高,可为隧道塌方处治效果的评定提供理论依据.
Prediction Model for Deformation of Shallow Buried Tunnel Portal Collapse Treatment Based on Hampel-DeepAR Model
In order to evaluate the safety of the shallow buried tunnel cavern section after collapse treatment,based on the moni-toring data of the deformation and force of the surrounding rock after treatment,the Hampel filter was used to process the data anoma-lies,and combined with the time series prediction DeepAR model,the Hample-DeepAR data prediction model was established and applied to the analysis of the stability of the surrounding rock after collapse treatment to verify the effectiveness of the treatment meas-ures.The results show that the MAE,MSE,RMSE,and R2 values of the Hampel-DeepAR model for vault settlement prediction are 0.018 5,0.000 5,0.021 4,and 0.564 8,respectively,which have higher prediction accuracy and better prediction effect compared with DeepAR,ARIMA,SVM,LSTM,and BP models,indicating that the use of Hample.The values of surrounding rock displace-ment and force prediction show that the arch top settlement value is 6.58mm,the surrounding convergence value is 5.89 mm,the arch top surrounding rock pressure value is 0.186MPa,the maximum stress value of steel reinforcement is 152.47 MPa,and the max-imum stress value of second liner concrete is 1.73 MPa,which shows the necessity of using Hample filter to deal with pre-processed abnormal values,and verifies the applicability of Hampel-DeepAR model.The stability of the surrounding rock has been greatly im-proved after treatment,which can provide a theoretical basis for the evaluation of the effect of tunnel collapse treatment.

tunnel collapseprediction of deformationhampel filteringhampel-DeepAR modeltreatment effect

王文强、燕波、张俊儒

展开 >

陕西铁路工程职业技术学院,陕西渭南 714000

陕西铁路工程职业技术学院陕西省高性能混凝土工程实验室,陕西渭南 714000

西南交通大学交通隧道工程教育部重点实验室,成都 610031

隧道塌方 变形预测 Hampel滤波 Hampel-Deep AR模型 处治效果

陕西铁路工程职业技术学院研究生专项渭南市重点研发计划国家高铁联合基金

KY2022-60STYKJ2022-3U1934213

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(4)
  • 10