首页|基于极限学习机的太阳能光伏电力系统负荷预测研究

基于极限学习机的太阳能光伏电力系统负荷预测研究

扫码查看
太阳能光伏发电受多种因素影响,包括太阳辐照度和电池板温度等,当室外环境发生变化时光伏阵列无法持续性工作,导致光伏发电的能量转换效率降低,其向电网注入的负荷和电能随之减少.只有准确地对周边环境变化进行分析,才能合理利用太阳能资源,充分调动太阳能光伏发电的输出负荷,为此,研究基于极限学习机的太阳能光伏电力系统的负荷预测方法.光伏电力系统受太阳辐射影响,为对其系统负荷进行预测,通过贝塔函数建立负荷峰值模型,获取光伏电池组的辐射强度,确定太阳辐射的分布概率密度.采用概率密度构建负荷预测函数集,在寻找最优函数的基础上,定义预测函数的依赖关系.基于极限学习机关联预测函数期望值,通过最小二乘解确定预测权值,实现太阳能光伏电力系统负荷预测,完成方法设计.实验结果表明:新方法能够对并行光伏电力系统的出力值进行有效预测,平均相对误差可以控制在1%以下,具有应用价值.
Research on Load prediction of solar photovoltaic power system based on Extreme Learning Machine
Solar photovoltaic power generation is affected by a variety of factors,including solar irradiance and panel tempera-ture,when the outdoor environment changes,the photovoltaic array can not continue to work,resulting in the reduction of the energy conversion efficiency of photovoltaic power generation,the load and energy injected into the grid will be reduced.Only when the sur-rounding environment changes are analyzed accurately,can the solar energy resources be utilized rationally and the output load of solar photovoltaic power generation be fully mobilized.Therefore,the load prediction method of solar photovoltaic power system based on extreme learning machine is studied.The photovoltaic power system is affected by solar radiation.In order to predict the system load,the peak load model is established by beta function to obtain the radiation intensity of photovoltaic cells and determine the distribution probability density of solar radiation.The probability density is used to construct the load prediction function set,and the dependence of the prediction function is defined on the basis of seeking the optimal function.Based on the expected value of extreme learning ma-chine associated prediction function,the prediction weight was determined by the least square solution to realize the load prediction of solar photovoltaic power system,and the method design was completed.The experimental results show that the new method can effec-tively predict the output value of parallel photovoltaic power system,and the average relative error can be controlled below 1%,which has application value.

photovoltaic power systemextreme learning machineload predictionsolar energy

陈再新、祁广业、鲁建勋

展开 >

内蒙古电力(集团)有限责任公司呼和浩特供电分公司,呼和浩特 010020

光伏电力系统 极限学习机 负荷预测 太阳能

国家自然科学基金

61403321

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(4)
  • 15