首页|图卷积神经网络结合回译流程的自动翻译器设计

图卷积神经网络结合回译流程的自动翻译器设计

扫码查看
为了解决汉语与法语间的快速翻译问题,研究提出了一种图卷积神经网络结合回译流程的自动翻译器.过程中将注意力机制进行引入,并使用回译手段对翻译器进行数据增广.实验结果表明,研究方法在进行法译汉任务时,平均Rouge-L分数在不同词汇数前提下都保持在0.908以上;在进行翻译耗时测试时,研究方法在汉译法字数达到60字时的耗时为178 ms.结果说明,研究所设计的自动翻译器在进行汉语与法语之间的文本翻译时,两个方向都具有良好的翻译准确率,能够以更短的时间完成翻译任务,翻译所得结果更加贴合人类实际阅读逻辑,能够为翻译任务提供有效技术参考.
Design of an Automatic Translator Based on Graph Convolutional Neural Network and Backtranslation Process
In order to solve the problem of fast translation between Chinese and French,a graph convolutional neural network combined with backtracking process is proposed for automatic translation.The attention mechanism will be introduced in the process,and backtracking methods will be used to expand the data of the translator.The experimental results show that the average Rouge-L score of the research method in French Chinese translation tasks remains above 0.908 under different vocabulary counts;When con-ducting translation time testing,the research method took 178ms when the Chinese translation method reached 60 words.The results indicate that the automatic translator designed by the research institute has good translation accuracy in both directions when transla-ting text between Chinese and French,and can complete translation tasks in a shorter time.The translation results are more in line with human actual reading logic,and can provide effective technical references for translation tasks.

graph convolutional neural networkfrenchautomatic translatorattention mechanism

李鑫、薛世峰

展开 >

南京传媒学院,南京 211172

南京华飞数据技术有限公司,南京 210019

图卷积神经网络 法语 自动翻译器 注意力机制

江苏省高等学校哲学社会科学研究一般项目

2018SJA0756

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(4)
  • 12