首页|基于Bi-LSTM和Softmax的辅助发声训练系统设计研究

基于Bi-LSTM和Softmax的辅助发声训练系统设计研究

扫码查看
为进一步提升英语口语发音训练的辅助效果,提出一种基于双向多轮信息共享网络IN-SN的口语理解模型,辅助学习者进行英语口语的发声训练.其中,以Bi-LSTM为基础的语义信息提取方法,结合双向多轮信息共享网络和注意力机制,以实现更佳的口语理解效果.实验结果表明,与其他语义提取模型相比,设计的基于IN-SN的口语理解模型具有更好的语义提取能力,在数据集ATIS和数据集SNPIS上的准确率和F1评分上分别达到了 96.06%、95.98%、97.47%、94.03%;设计的英语口语辅助训练系统能够进行准确意图识别和语义槽填充.综上,设计的英语口语辅助训练系统性能良好,能够应用于实际的英语口语发声学习场景中,可行性较高.
Design and Research of an Assisted Vocal Training System Based on Bi-LSTM and Softmax
To further improve the auxiliary effect of English oral pronunciation training,a bidirectional multi round information sharing network IN-SN based oral comprehension model is proposed to assist learners in English oral pronunciation training.Among them,the semantic information extraction method based on Bi LSTM combines bidirectional multi round information sharing network and attention mechanism to achieve better oral comprehension effects.The experimental results show that compared with other seman-tic extraction models,the designed IN-SN based oral comprehension model has better semantic extraction ability,achieving accuracy and F1 scores of 96.06%,95.98%,97.47%,and 94.03%on the dataset ATIS and dataset SNPIS,respectively;The designed Eng-lish speaking auxiliary training system can perform accurate intention recognition and semantic slot filling.In summary,the designed English speaking auxiliary training system has good performance and can be applied to practical English speaking vocalization learning scenarios,with high feasibility.

spoken Englishauxiliary trainingsemantic extractioninformation sharing network

李可

展开 >

陕西工业职业技术学院,陕西咸阳 712000

英语口语 辅助训练 语义提取 信息共享网络

陕西省中华职业教育社研究课题教育教指委项目中国教育国际交流协会项目陕西工业职业技术学院项目

ZJS202324JYJZWZW-2023B-02GJZJ2021-122022YKYB-060

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(4)
  • 12