首页|基于异常音频信号的踏板机械系统轴承故障识别研究

基于异常音频信号的踏板机械系统轴承故障识别研究

扫码查看
为确保钢琴演奏的音质,踏板机械系统轴承的健康状态至关重要.检测并识别其中潜在的故障,对维持乐器的性能表现有着显著作用.针对这一需求,研究构建了一套异常音频信号处理及故障诊断模型.通过小波分析技术从音频信号中提取特征,并结合机器学习方法来识别轴承故障.实验数据集经过系统采集,并在所提出的模型中进行验证,结果显示该模型具备准确辨识异常音频信号的能力,其判断正确率达到90.00%,对故障分类的判断准确率高达93.25%,这两项指标均超过了传统对比模型的性能水平.结论验证了所提出模型在钢琴踏板机械系统轴承故障诊断中的有效性与高效性,为同类乐器的故障判断提供了有力的技术支撑.
Research on bearing fault identification of pedal mechanical system based on abnormal audio signal
In order to ensure the sound quality of the piano,the health of the pedal mechanical system bearing is very important.Detection and identification of potential failures can play a significant role in maintaining performance.To meet this requirement,a set of abnormal audio signal processing and fault diagnosis model is built.Features are extracted from audio signals using wavelet analysis techniques and combined with machine learning methods to identify bearing failures.The experimental data set is collected by the sys-tem and verified in the proposed model.The results show that the model has the ability to accurately identify abnormal audio signals,with a judgment accuracy of 90.00%and a judgment accuracy of 93.25%for fault classification.Both indicators exceed the perform-ance level of the traditional comparison model.The conclusion verifies the validity and high efficiency of the proposed model in the bearing fault diagnosis of piano pedal mechanical system,which provides a strong technical support for the fault judgment of similar musical instruments.

pianoabnormal audio signalpedal mechanical systemfault diagnosiswavelet analysisdeep learning

韩璐娇、邓文龙

展开 >

咸阳师范学院,陕西咸阳 712000

郑州龙浩机电设备有限公司,郑州 450000

钢琴 异常音频信号 踏板机械系统 故障诊断 小波分析 深度学习

陕西省哲学社会科学研究专项青年项目(2023)

2023QN0274

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(4)
  • 12