首页|基于机器学习的书画装裱机故障自动识别方法研究

基于机器学习的书画装裱机故障自动识别方法研究

扫码查看
针对电机在运行过程中可能出现故障的问题,提出了一种基于卷积神经网络的装裱机电机故障诊断模型,引入了注意力机制和多尺度模块,并利用长短时记忆网络的处理能力,使得模型能够在高噪声环境下对故障进行识别.结果表明,在迭代次数到达25时,混合模型、一维卷积小波神经网络模型、长短时记忆模型和循环神经网络模型的准确率分别为0.99、0.82、0.78和0.72.在较大的数据集,四种模型的运算时间分别为0.56 s、0.64 s、0.62 s和0.58 s.说明此次提出的混合模型即使面对较大验证集,性能也能保持较高的水平,并且所需迭代次数相对较少.同时,证明该模型能在大量噪声中对电机运行状态进行准确判断,为书画装裱故障识别提供了新的改进思路.
Research on Automatic Fault Identification Method for Calligraphy and Painting Mounter Based on Machine Learning
A fault diagnosis model for mounting machine motors based on convolutional neural networks is proposed to address the issue of possible motor faults during operation.Attention mechanism and multi-scale modules are introduced,and the processing abil-ity of long and short term memory networks is utilized to enable the model to identify faults in high noise environments.The results show that when the number of iterations reaches 25,the accuracy of the hybrid model,one-dimensional convolutional wavelet neural network model,long-term and short-term memory model,and recurrent neural network model are 0.99,0.82,0.78,and 0.72,re-spectively.In larger datasets,the operation time of the four models is 0.56 s,0.64 s,0.62 s,and 0.58 s,respectively.This indi-cates that the proposed hybrid model can maintain a high level of performance even when facing a large validation set,and requires relatively few iterations.At the same time,it has been proven that the model can accurately judge the operating status of the motor in a large amount of noise,providing a new improvement idea for identifying faults in calligraphy and painting mounting.

calligraphy and painting mounting machinewavelet transformfault diagnosisMotorconvolutional neural network

肖涵

展开 >

四川科技职业学院,四川眉山 620564

书画装裱机 小波变换 故障诊断 电机 卷积神经网络

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(4)
  • 14