首页|基于DBSCAN的HMM算法在翻译机器人同声传译中的应用与性能分析

基于DBSCAN的HMM算法在翻译机器人同声传译中的应用与性能分析

扫码查看
随着社会对英语翻译机器人同声传译功能要求的增加,许多翻译机器人的同声传译功能亟需提升.针对这一问题,研究利用基于密度的聚类算法对隐马尔科夫模型进行改进,并在改进算法的基础上构建新型的翻译机器人同声传译模型.对改进后的隐马尔科夫模型算法进行对比实验发现,改进算法在数据集中的最高准确率和召回率分别为0.913和0.912,显著优于对比算法.之后对同声传译模型的性能进行实证分析,结果显示,提出的同声传译模型的翻译耗时和翻译稳定性分别为78.3 s和0.79,显著优于传统模型.上述结果说明,研究提出的改进隐马尔科夫模型算法和基于该算法的同声传译模型均具有较优的性能,故将其应用于英语翻译机器人同声传译中可促进同声传译领域的发展.
Application and Performance Analysis of HMM Algorithm Based on DBSCAN in Simultaneous Interpretation of Translation Robots
With the increasing demand from society for the simultaneous interpretation function of English translation robots,the simultaneous interpretation function of many translation robots urgently needs to be improved.To address this issue,a density based clustering algorithm is studied to improve the hidden Markov model,and a new simultaneous interpretation model for translation robots is constructed based on the improved algorithm.Comparative experiments on the improved hidden Markov model algorithm showed that the highest accuracy and recall rates of the improved algorithm in the dataset were 0.913 and 0.912,respectively,which were significantly better than the comparison algorithm.Subsequently,an empirical analysis was conducted on the performance of the sim-ultaneous interpretation model,and the results showed that the proposed simultaneous interpretation model had a translation time and stability of 78.3 seconds and 0.79 seconds,respectively,significantly better than traditional models.The above results indicate that both the improved hidden Markov model algorithm proposed in the study and the simultaneous interpretation model based on this algo-rithm have excellent performance.Therefore,its application in English translation robot simultaneous interpretation can promote the development of the field of simultaneous interpretation.

DBSCANHMMtranslation robotsimultaneous interpretation

陈琳

展开 >

咸阳师范学院,陕西咸阳 712000

DBSCAN HMM 翻译机器人 同声传译

咸阳师范学院校级陕西教育学会教改项目

2021Y032

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(5)
  • 13