首页|可穿戴式设备心电图数据自动采集方法研究

可穿戴式设备心电图数据自动采集方法研究

扫码查看
目前,可穿戴设备心电图数据采集易受到干扰与噪声的影响.为了得到精度更高的心电图数据,研究基于可穿戴式设备自动采集的数据,优化心电图数据分析方法,提出了轻量化心拍卷积网络模型.实验结果显示,轻量化心拍卷积网络模型能够准确地定位R峰,此模型准确率98.78%,灵敏度99.32%,真阳率99.41%,误检率为1.39%,均优于其余四种方法.通过研究可穿戴式设备心电图数据的自动采集方法,不仅提供了一种方便、实时且准确的心电图数据采集方式,而且还提升了对心电图的分析和检测能力.通过将心电图采集和分析整合到可穿戴设备中,可以实时监测个体的心脏健康状况,及时发现异常情况,并提供相应的医疗干预措施,对推动可穿戴技术在医疗领域的应用具有重要意义.
Research on automatic collection method of electrocardiogram data for wearable devices
Currently,wearable devices are susceptible to interference and noise in electrocardiogram data collection.In order to obtain more accurate electrocardiogram data,a lightweight heart beat convolutional network model was proposed based on the study of data automatically collected by wearable devices and optimization of electrocardiogram data analysis methods.The experimental results show that the lightweight heartbeat convolutional network model can accurately locate the R peak,with an accuracy rate of 98.78%,sensitivity of 99.32%,true positivity rate of 99.41%,and false detection rate of 1.39%,all of which are superior to the other four methods.By studying the automatic collection method of wearable device electrocardiogram data,not only does it provide a conven-ient,real-time,and accurate electrocardiogram data collection method,but it also improves the analysis and detection ability of elec-trocardiogram.By integrating electrocardiogram collection and analysis into wearable devices,individuals'heart health status can be monitored in real time,abnormal situations can be detected in a timely manner,and corresponding medical intervention measures can be provided.This is of great significance for promoting the application of wearable technology in the medical field.

wearable devicesautomatic collectionelectrocardiogramlightweightconvolutional network model

车璐、王相茹、王嘉妮、柴晓慧

展开 >

西安交通大学城市学院,西安 710018

西安交通大学第二附属医院,西安 710004

青岛市市立医院,山东青岛 266071

可穿戴设备 自动采集 心电图 轻量化 卷积网络模型

陕西省教育科学"十四五"规划2022年度青年课题2023年陕西省体育局常规课题

SGH21Q0552023618

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(5)
  • 12