首页|基于深度脉冲神经网络的电动汽车充电安全状态预测

基于深度脉冲神经网络的电动汽车充电安全状态预测

扫码查看
针对电动汽车充电安全状态预测精度不高,充电安全保障程度不够的问题,提出以深度脉冲神经网络为基础依据的电动汽车充电安全状态预测系统.系统通过粒子群算法对脉冲神经网络进行深度优化,以实现更加准确的电动汽车充电安全状态预测.电动汽车充电安全状态预测主要通过电动汽车充电时的充电数据信息,对电动汽车动力电池的充电温度进行预测,通过阈值判断电动汽车充电过程是否处于安全状态.经过实验验证分析,设计的系统精确度高,泛化能力强,更加适用于电动汽车充电安全状态预测.
Prediction of EV charging safety state based on deep spiking neural network
In order to solve the problem that the prediction accuracy of electric vehicle charging safety state is not high and the degree of charging safety guarantee is insufficient,a charging safety state prediction system for electric vehicles based on deep spiking neural network is proposed.The spiking neural network is deeply optimized by particle swarm optimization to achieve more accurate prediction of the charging safety state of electric vehicles.The prediction of the charging safety state of electric vehicles mainly pre-dicts the charging temperature of the electric vehicle power battery through the charging data information of the electric vehicle during charging,and judges whether the electric vehicle charging process is in a safe state through the threshold.After experimental verifica-tion and analysis,the design system in this paper has high accuracy and strong generalization ability,which is more suitable for pre-dicting the charging safety state of electric vehicles.

electric vehiclescharging safety statespiking neuronsparticle swarm algorithm

王鹏、柏世涛、吴智强、欧阳、王毅

展开 >

中国汽车工程研究院股份有限公司,重庆 400021

电动汽车 充电安全状态 脉冲神经元 粒子群算法

中国汽研指数课题

0001KTCP20230380-03

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(6)
  • 10