首页|基于深度学习的电力图像大数据分类研究

基于深度学习的电力图像大数据分类研究

扫码查看
与普通图像数据分类相比,电力图像数据之间的相似度更高,为数据的分类工作带来较大难度,以提高电力图像大数据分类精度为目的,提出基于深度学习的电力图像大数据分类方法.采用数据挖掘的方式,采集电力图像大数据,通过灰度化、滤波等步骤,完成对初始电力图像大数据的预处理.利用深度学习算法中的卷积神经网络,通过前向传播与反向传播的训练,得出电力图像大数据特征的提取结果.最终通过特征匹配,确定电力图像大数据的所属类型,完成数据的分类工作.通过性能测试实验得出结论:与传统方法相比,优化设计方法的分类准确率和召回率分别提高了 4.8%和2.35%,即优化设计方法在分类性能方面具有明显优势.
Research on Power Image Big Data Classification Based on Deep Learning
Compared with ordinary image data classification,the similarity between power image data is higher,which brings greater difficulty to the data classification work.In order to improve the accuracy of power image big data classification,a deep learn-ing based power image big data classification method is proposed.By using data mining to collect big data from power images,prepro-cessing of the initial power image big data is completed through steps such as grayscale and filtering.By utilizing convolutional neural networks in deep learning algorithms and training through forward and backward propagation,the extraction results of big data features in power images are obtained.Finally,through feature matching,the type of power image big data is determined,and the data classi-fication work is completed.Through performance testing experiments,it was concluded that compared with traditional methods,the optimized design method has improved classification accuracy and recall by 4.8%and 2.35%,respectively,indicating that the opti-mized design method has significant advantages in classification performance.

deep learningpower imagepower big datadata classification

陈晓雷、朱轩冕、温积群、刘主光、曲钰、高志坚

展开 >

浙江图盛输变电工程有限公司温州科技分公司,浙江温州 325000

深度学习 电力图像 电力大数据 数据分类

&&

CF058804062022003

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(6)