首页|基于前向神经网络的分布式光伏承载力预测方法

基于前向神经网络的分布式光伏承载力预测方法

扫码查看
光伏能源较为分散,可供容量也存在着一定的限制,并网过程中会影响电力系统的稳定性,提出基于前向神经网络的分布式光伏承载力预测方法研究.构建分布式光伏发电系统模型,深入分析分布式光伏承载力影响因素,以电力系统稳定运行为目标,构造分布式光伏承载力预测模型,并确定相应的约束条件,引入并训练前向神经网络,将分布式光伏并网相关数据输入至训练好的前向神经网络中,输出结果即为分布式光伏承载力预测结果.实验结果显示:应用提出方法获得的光伏承载力预测时间小于给定最大限值,光伏承载力预测结果与实际结果几乎保持一致,充分证实了提出方法应用性能较佳.
Prediction method of distributed photovoltaic carrying capacity based on forward neural network
Photovoltaic energy is relatively scattered,and there are certain restrictions on the available capacity,which will affect the stability of the power system in the process of grid connection.A distributed photovoltaic carrying capacity based on forward neural network is proposed.Research on forecasting methods.Build a distributed photovoltaic power generation system model,in-depth a-nalysis of the influencing factors of distributed photovoltaic carrying capacity,with the goal of stable operation of the power system,construct a distributed photovoltaic carrying capacity prediction model,and determine the corresponding constraints,introduce and train a forward neural network,The data related to distributed photovoltaic grid connection is input into the trained forward neural net-work,and the output result is the prediction result of distributed photovoltaic carrying capacity.The experimental results show that the photovoltaic carrying capacity prediction time obtained by the proposed method is less than the given maximum limit,and the photo-voltaic carrying capacity prediction results are almost consistent with the actual results,which fully confirms the good application per-formance of the proposed method.

distributedcarrying capacityphotovoltaicforward neural networkpredictionmaximum access capacity

徐其春、田新成、徐小华

展开 >

国网冀北唐山供电公司,河北唐山 063000

分布式 承载力 光伏 前向神经网络 预测 最大接入容量

国网河北省电力有限公司科技项目

S20198GF015

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(6)