首页|基于Bi-GRU网络和自注意力机制的自动作曲系统研究

基于Bi-GRU网络和自注意力机制的自动作曲系统研究

扫码查看
为了提高自动作曲系统的性能表现,提高自动生成音乐的质量和创造性,研究对音乐特征的表示进行了优化,然后设计了一种基于双向门控循环单元和自注意力机制的自动作曲模型,以更精确地捕获音乐的时序特征和结构.在Topi准确率对比中,研究方法在更短的训练轮数下达到了更高的准确率.与其他两种方案相比,研究方法在100轮训练时的准确率分别提高了 10.26%和14.56%.在主观评价中,研究方法获得的评分大多表示感情丰富度和满意度都较好,也优于其他两种先进方法.最后,在作曲时间的对比中,当生成乐段长度为70 s时,与其他方法相比,研究方法分别减少了 7.34 s、18.31 s、23.18 s和39.92 s.实验结果验证了此次研究的有效性,研究为自动作曲系统的发展提供了有力的支持.
Research on automatic composing system based on Bi-GRU network and self-attention mechanism
In order to improve the performance performance of an automatic composition system and to enhance the quality and creativity of automatically generated music,the research refines how musical characteristics are represented and creates a model for autonomous music composition that leverages both a bidirectional gated recurrent unit and a self-attention mechanism to more accu-rately capture the temporal features and structure of music.In the Topi accuracy comparison,the research method achieves higher ac-curacy with a shorter number of training rounds.Compared to the other two schemes,the research method improved the accuracy by 10.26%and 14.56%at 100 training rounds,respectively.In subjective evaluations,the research method received scores that mostly indicated better emotional richness and satisfaction,which were also superior to the other two state-of-the-art methods.Finally,in the comparison of composing time,when the length of the generated phrase is 70s,the research method reduces 7.34 s,18.31 s,23.18 s,and 39.92 s,respectively,compared to the other methods.The experimental results verify the validity of this research,and the study provides a strong support for the development of automated composing systems.

Bi-directional gated loop cellself-attention mechanismautomatic composingtiming characteristics

窦菲菲、陈娟

展开 >

咸阳师范学院,陕西咸阳 712000

双向门控循环单元 自注意力机制 自动作曲 时序特征

陕西省教育科学"十四五"规划2021年度课题

2021SGH21Y0198

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(6)
  • 13