首页|基于混合特征和深度学习的安卓恶意软件动态检测研究

基于混合特征和深度学习的安卓恶意软件动态检测研究

扫码查看
为避免用于隐私泄露,设计基于混合特征和深度学习的安卓恶意软件动态检测方法,实现安卓恶意软件动态检测的高效性以及准确性.通过反探测方案防止恶意安卓软件检测模拟环境进程,并在模拟器中运行待测安卓软件,采集安卓软件动态运行数据,通过解压与反编译处理完成安卓软件运行数据文件预处理,从预处理后的安卓软件文件中提取以函数调用图特征、字节概率特征以及APK权限特征组成的安卓恶意软件混合特征,将获取的安卓恶意软件混合特征作为改进自编码网络的输入数据,输出安卓软件是正常或恶意软件的动态检测结果.实验表明:该方法可实现安卓恶意软件动态检测,并获取恶意软件类型,且动态检测时间短,具有较好的安卓恶意软件动态检测评价指标数值.
Research on dynamic detection of Android malware based on mixed features and deep learning
To avoid privacy breaches,a dynamic detection method for Android malware based on mixed features and deep learn-ing is studied to achieve the efficiency and accuracy of Android malware dynamic detection.Prevent malicious Android software from detecting simulated environment processes through anti detection schemes,and run the tested Android software in the simulator.Col-lect dynamic running data of the Android software,and preprocess the Android software running data file through decompression and decompilation.Extract Android malware mixed features composed of function call graph features,byte probability features,and APK permission features from the preprocessed Android software file,Use the obtained mixed features of Android malware as input data for improving the self coding network,and output the dynamic detection results of whether the Android software is normal or malicious.The experiment shows that this method can achieve dynamic detection of Android malware and obtain the type of malware,with a short dynamic detection time and good evaluation index values for Android malware dynamic detection.

mixed characteristicsdeep learningandroid malwaredynamic detectionfunction call graphself-coding net-work

田娟、徐钊

展开 >

新疆维吾尔自治区克拉玛依职业技术学院,新疆维吾尔自治区 834000

混合特征 深度学习 安卓恶意软件 动态检测 函数调用图 自编码网络

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(6)