首页|基于BP神经网络优化的某破障武器自抗扰控制研究

基于BP神经网络优化的某破障武器自抗扰控制研究

扫码查看
针对某破障武器位置随动系统工作时,受到各种非线性扰动导致系统的响应速度和跟瞄精度受到影响的问题,设计了一种改进型自抗扰控制器(ADRC).利用BP神经网络(BPNN)适应性好和自学能力强的优点,对ADRC的相关参数在线寻优,并采用人工鱼群算法(AFSA)对神经网络的权值进行优化,来进一步提升控制器性能.利用MATLAB软件对控制器进行仿真验证,仿真结果表明:该控制方法能有效提高随动系统的抗干扰能力和跟踪精度.
Research on active disturbance rejection control of barrier-breaking weapon based on BP neural network optimization
A modified Active Disturbance Rejection Controller(ADRC)is designed to address the issue of various nonlinear dis-turbances affecting the response speed and tracking accuracy of a certain obstacle breaking weapon position servo system during opera-tion.By utilizing the advantages of good adaptability and self-learning ability of BP neural network(BPNN),the relevant parameters of ADRC are optimized online,and the artificial fish swarm algorithm(AFSA)is used to optimize the weights of the neural network,in order to further improve the performance of the controller.Using MATLAB software to simulate and verify the controller,the simu-lation results show that this control method can improve the anti-interference ability and tracking accuracy of the servo system.

servo systembarrier breaking weaponBP neural networkartificial fish swarm algorithmADRC

龚永昌、高强、王嘉良、张亮伟、严来福

展开 >

南京理工大学机械工程学院,南京 210094

随动系统 破障武器 BP神经网络 人工鱼群算法 自抗扰控制

中央高校基本科研业务费专项

2023101001

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(7)