首页|面向工业网络场景的基于1DLA-CNN和DCNN-IDS算法的网络安全检测模型研究

面向工业网络场景的基于1DLA-CNN和DCNN-IDS算法的网络安全检测模型研究

扫码查看
工业网络的安全性对于能源、制造和基础设施等领域至关重要.研究针对工业网络的安全检测问题,提出了一种在卷积神经网络基础上设计的方法.过程中使用一维卷积神经网络作为模型基础,并在模型输出层前加入注意力机制和长短期记忆机制.实验结果表明,研究方法运行总时间为600 s时的缓存数据体积在59 Mb以下.说明研究方法在进行网络安全检测时能具有强大的学习和预测能力,能够从大量的训练数据中学习到有效的特征和模式,能够区分出正常行为和恶意行为,避免因为误报而产生大量的误操作或者干扰正常的工作流程,能够在短时间内完成对大量数据的处理和分析,及时给出检测结果,从而尽早防止可能的安全威胁.
Research on Network Security Detection Model Based on 1DLA-CNN and DCNN-IDS Algorithms for Industrial Network Scenarios
The security of industrial networks is crucial for areas such as energy,manufacturing,and infrastructure.A method designed on the basis of convolutional neural networks is proposed to address the security detection issues of industrial networks.Dur-ing the process,a one-dimensional convolutional neural network is used as the foundation of the model,and attention mechanisms and short-term memory mechanisms are added before the output layer of the model.The experimental results indicate that the cache data volume is below 59Mb when the total running time of the research method is 600s.The research method can have strong learning and prediction abilities in network security detection,learn effective features and patterns from a large amount of training data,distin-guish between normal and malicious behavior,avoid a large number of misoperations or interference with normal workflow due to false alarms,and complete the processing and analysis of a large amount of data in a short time,providing timely detection results,To pre-vent potential security threats as soon as possible.

industrial networkintrusion detectionneural networkattention mechanism

李一鑫

展开 >

咸阳职业技术学院,陕西咸阳 712000

工业网络 入侵检测 神经网络 注意力机制

咸阳职业技术学院科研基金项目咸阳市重点研发计划项目

2021KJB03L2022ZDYFSF061

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(7)