首页|基于深度神经网络的工业网络安全态势感知方法设计

基于深度神经网络的工业网络安全态势感知方法设计

扫码查看
工业网络时刻面临着来自网络中的各种攻击入侵风险,为保护工业网络安全,设计一种基于深度神经网络的工业网络安全态势感知方法.该设计中通过数据仓库集成技术集成深度神经网络输入所需要的态势信息并实施处理,利用层次分析法从基础信息中提取关键态势要素,以关键态势要素为输入,利用深度神经网络计算工业网络安全态势值并划分安全态势等级.结果表明:随着攻击的进行,工业网络安全态势值呈现上升的趋势,其中U2R攻击下的态势值从最初0.32上升到了 0.86,态势等级从安全发展到了高风险;DDos攻击下态势值从0.47上升到了 0.55,态势等级从安全发展到了中等风险;Porbe攻击下态势值变化不明显,态势等级一直处在安全级别,由此说明该工业网络针对Porbe攻击防护能力最强,针对U2R攻击防护能力最弱.
Design of Industrial Network Security Situation Awareness Method Based on Deep Neural Network
Industrial networks are constantly facing various attack and intrusion risks from the network.To protect the security of industrial networks,a deep neural network-based industrial network security situational awareness method is designed.In this de-sign,data warehousing integration technology is used to integrate the situation information required for deep neural network input and implement processing.The Analytic Hierarchy Process is used to extract key situation elements from the basic information,and the key situation elements are used as inputs.The deep neural network is used to calculate the industrial network security situation value and classify the security situation level.The results show that as the attack progresses,the security situation value of industrial net-works shows an upward trend,with the situation value under U2R attack increasing from 0.32 to 0.86,and the situation level develo-ping from secure to high-risk;Under DDos attacks,the situational value has increased from 0.47 to 0.55,and the situational level has evolved from safe to medium risk;The situation value does not change significantly under the Porbe attack,and the situation level has always been at the security level,indicating that the industrial network has the strongest protection ability against Porbe attacks and the weakest protection ability against U2R attacks.

deep neural networkindustrial networksecurity situationperception methods

吴德峰、祁志荣、郑乾坤

展开 >

中安联合煤化有限责任公司,安徽淮南 232090

深度神经网络 工业网络 安全态势 感知方法

工控系统网络安全策略研究与治理(管理网部分)

36000188-21-FW2099-0022

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(7)