首页|基于SOM的电能计量装置数据自动集成方法

基于SOM的电能计量装置数据自动集成方法

扫码查看
目前的电能计量装置是由电力互感器、电能表及二次联线等环节构成.由于多种设备的数据具有不同属性,且中间环节容易导致误差、窃电等影响数据自动集成的结果.提出基于SOM网络的电能计量装置数据自动集成方法.首先,利用SOM网络的训练过程不断改变神经元连接权值,计算并完成对电能计量装置数据的分类处理;然后,分析自动集成的约束条件,在数据属性参数(即"T值")及装置终端参数(即"M值")的约束下,将数据集成任务拆解为多个任务子集,得到电能计量装置数据的属性,确保已分类数据的一致性和可靠性;最后,根据约束条件,通过SOM网络自主学习能力完成终端数据的自动集成.实验结果表明:本方法具有较低的丢包率和误差,能高效完成电能计量装置数据自动集成任务.
Automatic data integration method of electric energy metering device based on SOM
The current electricity metering device is composed of power transformers,energy meters,and secondary connections.Due to the different attributes of data from multiple devices,and the intermediate links that can easily lead to errors,power theft,and other factors affecting the results of automatic data integration.Propose an automatic data integration method for electric energy mete-ring devices based on SOM network.Firstly,the training process of the SOM network is utilized to continuously change the connection weights of neurons,calculate and complete the classification and processing of data from electric energy metering devices;Then,ana-lyze the constraints of automatic integration,and under the constraints of data attribute parameters(i.e."T value")and device ter-minal parameters(i.e."M value"),decompose the data integration task into multiple task subsets to obtain the attributes of the e-lectricity metering device data,ensuring the consistency and reliability of the classified data;Finally,according to the constraints,the automatic integration of terminal data is achieved through the autonomous learning ability of the SOM network.The experimental results show that the method proposed in this paper has a low packet loss rate and error,and can efficiently complete the task of auto-matic data integration for power metering devices.

self-organizing mapping neural networkelectric energy metering deviceautomatic data integrationautonomous learning trainingtask terminal matrix

周晨晖、石贇超、章琛敏、黄沁沁、刘兴平

展开 >

国网浙江省电力有限公司营销服务中心,杭州 310007

自组织映射神经网络 电能计量装置 数据自动集成 自主学习训练 任务终端矩阵

国家电网公司依托工程基建新技术研究项目

SG-BJSY00JJJS2200588

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(7)