首页|基于YOLOv8n的机场行李检测研究

基于YOLOv8n的机场行李检测研究

扫码查看
随着深度学习和人工智能的兴起,以及闭路电视监控系统对行李输送线的全覆盖,研究者开始使用图像识别技术对行李进行全程的识别跟踪,但在生产运营过程中,图像质量低、行李粘连堆叠等影响识别跟踪精度的问题时有发生.针对这些问题,提出一种注意力特征增强方法来抑制背景信息,使神经网络提取行李特征的过程中具有更好的鲁棒性.为了验证该方法的有效性,采用昆明机场的行李图像构建数据集,在此数据集上,该方法的检测精度达到了 70.2%,以及很小的参数量,为行李处理的效率和准确率提升提供了支撑.
Research on airport baggage detection based on YOLOv8n
With the rise of deep learning and artificial intelligence,as well as the full coverage of the baggage conveyor line by the closed-circuit television monitoring system,researchers have begun to use image recognition technology to identify and track the baggage throughout the whole process,but in the process of production and operation,the problems of low image quality,baggage sticking and stacking and other problems affecting the accuracy of identification and tracking occur from time to time.To address these problems,an attentional feature enhancement method is proposed to suppress the background information and allow the neural network to extract baggage features with better robustness.In order to verify the effectiveness of the method,a dataset is constructed using bag-gage images from Kunming Airport,on which the detection accuracy of the method reaches 70.2%,as well as a very small number of parameters,which provides support for the efficiency and accuracy improvement of baggage processing.

YOLOobject detectionbaggage handling systemattention enhancementconvolutional neural network

曾学、崔鸿刚、王永增、刘林海、唐嘉、张雨欣

展开 >

昆明昆船智慧机场技术有限公司,昆明 650236

YOLO 目标检测 行李处理系统 注意力增强 卷积神经网络

云南省重大科技专项

202202AD080002

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(7)