首页|基于Attention机制和双向LSTM编码模型的智能软件工程情景式翻译研究

基于Attention机制和双向LSTM编码模型的智能软件工程情景式翻译研究

扫码查看
为了有效改善面向智能软件工程情景式英语翻译的翻译模型性能和其翻译效果,此次研究结合注意力机制和双向长短时记忆网络搭建了新型的英语翻译模型,在此基础上,结合各类软件和硬件设备设计了面向智能软件工程的情景式英语语料库.研究结果表明,所搭建的翻译模型具有较好的性能表现,最多迭代20次能够达到稳定状态,其运行误差值也保持在0.05以下,翻译准确率高达0.98.在实际应用中也能够获得更高的专家满意度.综上,此次研究所搭建的翻译模型和英语语料库能够为软件工程情景式英语翻译提供新的技术支持,促进英语翻译更加智能和更加情景化.
Research on Situational English Translation for Intelligent Software Engineering Based on Attention Mechanism and Bidirectional LSTM Coding Models
In order to effectively improve the performance of the translation model for situational English translation for intelligent software engineering and its translation effect,this research combines the Attention mechanism and bidirectional long and short-term memory network to build a new English translation model,based on which,the situational English corpus for intelligent software engi-neering is designed by combining various software and hardware devices.The results of the study show that the constructed translation model has better performance,can reach a stable state after 20 iterations at most,and its running error value is kept below 0.05,and the translation accuracy rate is as high as 0.98.In the practical application,it can also obtain higher expert satisfaction.In conclu-sion,the translation model and English corpus constructed in this research can provide new technical support for software engineering situational English translation,and promote English translation to be smarter and more situationalized.

attention mechanismBi-LSTMsoftware engineeringtranslationcontextualized

葛腾飞

展开 >

四川工业科技学院,四川德阳 618000

注意力机制 Bi-LSTM 软件工程 翻译 情景式

省级项目

BSWH2022YB06

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(7)