首页|融合情感信息的开放域对话生成算法在学前教育聊天机器人中的应用研究

融合情感信息的开放域对话生成算法在学前教育聊天机器人中的应用研究

扫码查看
为进一步提升学习教育机器人的教育质量,提出一种基于改进情感监督的对话生成模型.其中,以双向长短时记忆网络Bi-LSTM作为基础的对话生成方法,将其与情感监督的方法相结合,以进一步提升生成对话回复的质量.实验结果表明,与传统的端到端模型以及未改进的情感监督模型相比,改进的情感监督模型所生成的对话回复的质量明显更高,流畅度更高,更加自然并贴合人们实际的对话,在bigram多样性评价指标上具有明显的优势.综上,设计的基于改进情感监督的对话生成模型性能良好,能够生成质量较高的对话回复,将其应用于学前教育的场景中时,能够帮助儿童进行更高质量的对话学习.
Research on the Application of an Open Domain Conversation Generation Algorithm Integrating Emotional Information in a Chat Robot for Preschool Education
To further improve the educational quality of learning and educational robots,a dialogue generation model based on improved emotional supervision is proposed.Among them,the dialogue generation method based on the bidirectional long-term and short-term memory network Bi-LSTM is combined with the method of emotional supervision to further improve the quality of dialogue responses produced.The experimental results show that compared with traditional end-to-end models and unimproved emotional su-pervision models,the improved emotional supervision model generates significantly higher quality,smoother,more natural,and tai-lored to people's actual conversations.It has significant advantages in evaluating the diversity of bigram indicators.In summary,the designed dialogue generation model based on improved emotional supervision has good performance and can generate high-quality dia-logue responses.When applied in preschool education scenarios,it can help children engage in higher quality dialogue learning.

preschool educationdialogue generationemotional analysisBi LSTM

黄玉芳

展开 >

西安翻译学院,西安 710100

学前教育 对话生成 情感分析 Bi-LSTM

陕西省教育科学规划2023年度课题西安翻译学院2023年度校级科研基金

23B06

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(7)