首页|热耦合映射下的光伏电池组升温异常态势识别

热耦合映射下的光伏电池组升温异常态势识别

扫码查看
为了解决光伏电池组持续存在升温异常可能产生的安全隐患,及现有态势感知存在的偏差问题,提出一种光伏电池组升温异常态势识别方法.利用滑动窗口整合多时段的温度数据点,构建时间序列光伏电池组温度数据矩阵,分析时间数据与温度数据的热耦合映射关系.基于映射关系约束机器学习算法,计算升温异常分数值,通过异常分数值取值结果,判定异常态势.实验表明:光伏电池组映射数据趋势展示准确,不存在遗漏情况,误差低.
Identification of Abnormal Heating Situation of Photovoltaic Battery Groups under Thermal Coupling Mapping
In order to solve the safety hazards that may arise from the continuous abnormal heating of photovoltaic panels,as well as the deviation problem in the existing situation perception,a method for identifying the abnormal heating situation of photovoltaic panels is proposed.Integrating temperature data points from multiple time periods using sliding windows,constructing a time series photovoltaic cell temperature data matrix,and analyzing the thermal coupling mapping relationship between time data and temperature data.Based on the mapping relationship constraint machine learning algorithm,calculate the abnormal heating score,and determine the abnormal situation by taking the abnormal score value.The experiment shows that the trend display of photovoltaic cell group map-ping data is accurate,there are no omissions,and the error is low.

time seriesmapping perceptionphotovoltaic battery packabnormal warming trendthermal coupling relation-shipautomated identification

安少聪

展开 >

国网河北省电力有限公司新乐市供电分公司,河北新乐 050700

时间序列 映射感知 光伏电池组 升温异常态势 热耦合关系 自动化识别

河北省电力重点科研特色实践类项目

2022GKTSCX015

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(7)