首页|基于Leap motion传感器的音乐智能识别系统

基于Leap motion传感器的音乐智能识别系统

扫码查看
在智能技术不断发展的今天,音乐智能识别系统成为连接技术与艺术的重要桥梁.尤其是钢琴教学领域,由于其学习难度和高昂的教育成本,智能识别技术的应用显得尤为重要.为此,研究致力于开发一种基于Leap Motion传感器的音乐智能识别系统,旨在通过识别和分析钢琴专家的手势动作,为钢琴初学者提供一种更高效、更直观的学习方法.研究结合手指的生理结构和弹奏特性,建立了一个融合Denavit-Hartenberg参数的手指触键运动学模型,并使用Leap Motion采集的数据,通过反向神经网络对手指弹奏进行评估.结果显示,手指弹奏速度特征被成功捕捉;经特定去噪算法处理后,数据准确度达98%.而神经网络在测试样本上的误差仅为0.34%,显示出模型的高度精准性.该研究为音乐智能识别领域带来了重要的启示.
Music intelligent recognition system based on Leap motion sensor
In today's continuous development of intelligent technology,music intelligent recognition system has become an im-portant bridge connecting technology and art.Especially in the field of piano teaching,the application of intelligent recognition tech-nology is particularly important due to its learning difficulty and high education cost.To this end,the research is dedicated to the de-velopment of a Leap Motion sensor-based music intelligent recognition system,which aims to provide a more efficient and intuitive learning method for piano beginners by recognising and analysing the gestural movements of piano experts.The study combines the physiological structure and playing characteristics of fingers,establishes a kinematic model of finger keystroke incorporating Denavit-Hartenberg parameters,and uses the data captured by Leap Motion to evaluate finger playing via inverse neural network.The results showed that finger playing velocity features were successfully captured;the data were processed by a specific denoising algorithm with 98%accuracy.And the error of the neural network on the test sample is only 0.34%,showing the high accuracy of the model.This study brings important insights to the field of music intelligent recognition.

musicleap motionfingerdenavit-hartenberg parametric methodrecognition

窦菲菲、陈娟

展开 >

咸阳师范学院,陕西咸阳 712000

音乐 Leap Motion Denavit-Hartenberg 参数法 识别

陕西省教育科学"十四五"规划2021年度课题

2021SGH21Y0198

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(7)