首页|面向公共安全精细化治理的多任务卷积神经网络人脸检测技术

面向公共安全精细化治理的多任务卷积神经网络人脸检测技术

扫码查看
为了实现公共安全精细化管理,此次研究针对经典多任务级联卷积神经网络在复杂的环境条件下人脸检测精度不高这一缺点,分别对其中的3种网络提出了优化改进策略.所提出的改进策略包括深度可分离卷积、集成图片信息卷积残差模块和数据降维等措施.仿真实验表明,改进后模型中的提议网络、优化网络、输出网络对于人脸的检测精度分别可达到93.45%、95.77%和97.78%,其在训练过程中表现出更高的稳定性和收敛速度.因此,该模型能够为公共安全提供技术支持.
Multi task Convolutional Neural Network Face Detection Technology for Fine Governance of Public Safety
To achieve refined management of public safety,this study proposes optimization and improvement strategies for three types of classic multi task cascaded convolutional neural networks,which have low accuracy in face detection under complex environ-mental conditions.The proposed improvement strategies include depthwise separable convolution,integrated image information convo-lution residual module,and data dimensionality reduction measures.Simulation experiments show that the proposed network,opti-mized network,and output network in the improved model can achieve face detection accuracy of 93.45%,95.77%,and 97.78%,respectively.They exhibit higher stability and convergence speed during the training process.Therefore,this model can provide tech-nical support for public safety.

fine tuned governance of public safetyMTCNNface detectionchannel clippingweight quantification

曹清旭

展开 >

陕西警官职业学院,西安 710021

公共安全 MTCNN 人脸检测 通道剪裁 权重量化

陕西警官职业学院院级科研重点项目

YJKY2021

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(8)