首页|基于大数据的设备故障分析模型研究

基于大数据的设备故障分析模型研究

扫码查看
研究聚焦于设备故障诊断的精准化问题,采用了结合双向长短时记忆网络和关联规则分类器的方法来提升设备故障诊断的准确性.该模型通过Word2vec进行词向量训练,并应用SMOTE技术来处理数据不平衡问题.结果显示,在支持度和置信度阈值分别设定为0.28和0.55时表现最佳,达到了 84.9%的精确率和83.85%的召回率.双向长短时记忆网络在特征提取方面也表现出色,其精确率、召回率和Fl值分别为95.6%、96.2%和95.9%.证明了结合双向长短时记忆网络和关联规则分类器的方法在提高故障诊断准确性方面的有效性,为车载设备维护提供了有力的技术支持,具有显著的实际应用价值.
Research on equipment failure analysis model based on big data
The research focuses on the accuracy of equipment fault diagnosis and adopts a method combining bidirectional long short-term memory network and association rule classifier to improve the accuracy of equipment fault diagnosis.This model is trained on word vectors using Word2vec and applies SMOTE technology to address data imbalance issues.The results showed that the per-formance was best when the support and confidence thresholds were set to 0.28 and 0.55,respectively,achieving an accuracy rate of 84.9%and a recall rate of 83.85%.The bidirectional long short-term memory network also performs well in feature extraction,with accuracy,recall,and F1 values of 95.6%,96.2%,and 95.9%,respectively.It has been proven that the method combining bidi-rectional long short-term memory network and association rule classifier is effective in improving the accuracy of fault diagnosis,pro-viding strong technical support for the maintenance of on-board equipment,and has significant practical application value.

big databidirectional short-duration memory networkequipmentmalfunctionassociation rule

苏兴龙

展开 >

陕西工业职业技术学院,陕西咸阳 712000

大数据 双向长短时记忆网络 设备 故障 关联规则

2022年陕西省教育信息化发展研究项目

22JM011Y

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(8)