首页|变化规律预测下大差异电表数据异常检测

变化规律预测下大差异电表数据异常检测

扫码查看
智能电表在长期工作过程中会存在数据缺失,数据范围分布扩大,导致面对大差异电表数据存在检测准确度不高的问题.为此,提出基于卷积神经网络(Convolutional Neural Networks,CNN)与边缘计算的电表数据异常检测方法.在边缘计算模式下,采集电表数据.根据电表数据的时间连续性与周期性,对其中的缺失值进行填补,以确保数据的完整性.对填补后的电表数据进行标准化处理,使得不同特征的数据具有相似的范围和分布.预测电表数据的变化规律,从中提取有用的特征,将不同特征的向量进行融合,形成一个综合的特征向量;利用非对称卷积核的卷积神经网络(AC-CNN)模型,对综合的特征向量进行即时处理,并检测其中的异常特征.根据实验可知:该方法可以降低检测误差,有效提高对电表数据异常检测的准确率与效率.
Abnormality detection of large difference electricity meter data under the prediction of change patterns
During the long-term operation of smart meters,there may be data loss and expansion of data range distribution,re-sulting in low detection accuracy in the face of large differences in meter data.For this reason,a method based on convolutional neu-ral networks(CNN)and edge computing is proposed to detect the abnormality of meter data.In the edge computing mode,collect the meter data.Fill in missing values based on the time continuity and periodicity of the electricity meter data to ensure data integrity.Standardize the filled electricity meter data to ensure that data with different features have similar ranges and distributions.Predict the variation pattern of electricity meter data,extract useful features from it,fuse vectors of different features,and form a comprehensive feature vector;Using an asymmetric convolutional kernel based convolutional neural network(AC-CNN)model,real-time process-ing is performed on the synthesized feature vectors and abnormal features are detected.According to the experiment,it can be conclu-ded that this method can reduce detection errors and effectively improve the accuracy and efficiency of anomaly detection for electricity meter data.

convolutional neural networkedge computingfilling in missing valuesfeature vectorasymmetric convolutional kernel

宋强、杨婧、石云辉

展开 >

贵州电网有限责任公司计量中心,贵阳 550000

卷积神经网络 边缘计算 缺失值填补 特征向量 非对称卷积核

2023年省计量中心计量自动化主站系统改造

060000GG23020004

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(8)