首页|基于卷积神经网络的遥感无人机低空摄影智能模型测量土方工程研究

基于卷积神经网络的遥感无人机低空摄影智能模型测量土方工程研究

扫码查看
为了解决传统的土方测量方法效率低下、精度不高、受地形影响大等问题,此次研究提出了一种基于卷积神经网络算法的遥感无人机低空摄影智能模型来测量土方工程.首先,研究对基于卷积神经算法的遥感无人机低空摄影智能模型测量土方工程进行研究.其次,研究基于改进卷积神经网络算法对遥感无人机低空摄影智能模型进行构建.最后对此次研究模型进行结果分析,将此次研究模型与基于TSS技术的土方工程测量模型在384 000 m2的土方工程中进行土方面积测量实验,由结果可知,此次研究模型测量的土方工程面积为383 980 m2,基于TSS技术的土方工程测量模型测量的土方工程面积为380 000 m2.综上所述,此次研究模型能够有效地从无人机拍摄的图像中提取土方特征,并生成精确的土方测量结果.
The intelligent model of remote sensing UAV low altitude photography based on convolutional neural network used to measure earthworks
In order to solve the problems such as low efficiency,low accuracy and large impact of terrain on traditional earthwork measurement methods,this study proposed a remote sensing UAV low altitude photography intelligent model based on convolutional neural network algorithm to measure earthwork.Firstly,the intelligent model of remote sensing UAV low altitude photography based on convolutional neural algorithm is studied to measure earthworks.Secondly,based on the improved convolutional neural network al-gorithm,the intelligent model of remote sensing UAV low-altitude photography is constructed.Finally,the results of this research model are analyzed,and the research model and the earthmoving measurement model based on TSS technology are tested in the earth-moving area measurement experiment of 384000m2.According to the results,the earthmoving area measured by this research model is 383 980 m2.The earthmoving measurement model based on TSS technology measured an area of 380 000 m2.In summary,the re-search model can effectively extract earthwork features from images taken by drones and generate accurate earthwork measurement re-sults.

CNNremote sensing UAVlow altitude photographyearthwork surveyimage processing

何巧

展开 >

广州城市职业学院,广州 510405

卷积神经网络 遥感无人机 低空摄影 土方测量 图像处理

&&

2023GXJK871

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(8)