首页|基于目标跟踪的电网带电区域施工人员行为辨识方法技术研究

基于目标跟踪的电网带电区域施工人员行为辨识方法技术研究

扫码查看
研究针对电网带电区域施工人员行为监测存在的难点问题,设计了 一种基于目标跟踪的人员行为辨识系统.该系统结合计算机视觉技术和传感器技术,采用双向特征金字塔网络(BiFPN)和优化损失函数的方式对YOLOv5s进行改进,并引入卡尔曼滤波模型实现对施工人员行为的目标跟踪.结果显示,在NEU Pole和Baidu FSG数据集中的辨识正确率为92%以上,当准确率为0.9时,对应的召回率分别为0.82和0.84.研究系统在两种场景分别正确识别标注13个和44个.对比以上数据可知,研究系统能对电网带电区域施工人员行为进行精确辨识和实时跟踪检测.
Research on Behavior Identification Method for Construction Personnel in Live Areas of Power Grid Based on Target Tracking
A target tracking based personnel behavior identification system was designed to address the difficulties in monitoring the behavior of construction personnel in live areas of the power grid.Combining computer vision technology and sensor technology,bi-directional feature pyramid network(BiFPN)is used to optimate the Loss function to improve YOLOv5s,and introduces Kalman fil-ter model to realize target tracking of construction personnel's behavior.The results show that the identification accuracy in the NEU Pole and Baidu FSG datasets is over 92%.When the accuracy is 0.9,the corresponding recall rates are 0.82 and 0.84,respective-ly.The research system correctly identified 13 and 44 annotations in two scenarios,respectively.By comparing the above data,it can be seen that the research system can accurately identify and track the behavior of construction personnel in live areas of the power grid in real-time.Keywords:YOLOv5s algorithm;Power grid construction;Identification of personnel behavior;Target tracking algo-rithm;Kalman filter algorithm;Decision Tree Algorithm.

YOLOv5s algorithmidentification of personnel behaviortarget tracking algorithmkalman filter algorithm

钱彬、张宇蓉

展开 >

国网江苏省电力有限公司泰州供电分公司,江苏泰州 225300

YOLOv5s算法 人员行为辨识 目标跟踪算法 卡尔曼滤波算法

国家电网江苏省电力有限公司项目

J2022073

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(8)