首页|基于FA-DWA融合算法的人体运动机器人移动路径优化研究

基于FA-DWA融合算法的人体运动机器人移动路径优化研究

扫码查看
为进一步提升人体运动机器人移动过程中的路径规划质量,提出一种基于改进萤火虫算法融合动态窗口(iFA-DWA)算法的人体运动机器人移动路径规划方法.其中,以萤火虫算法作为基础的全局路径规划算法,并对其进行进一步改进,再以动态窗口算法作为局部路径规划算法,最后将两个算法进行融合,进一步提升路径规划质量.实验结果表明,与传统的全局路径规划算法相比,iFA-DWA融合算法能够得到更优的移动路径,路径长度更短,整体规划效果良好;在实际的路径规划测试中,基于iFA-DWA融合算法的路径规划方法所规划的路径质量最佳,算法运行时间较短,同时还能够对路径中的未知障碍进行有效躲避.综合,构建的基于iFA-DWA融合算法的路径规划方法性能良好,能够进行质量较高的路径规划,将其应用于人体运动机器人的路径规划时能够对移动过程进行有效优化,可行性较高.
Research on Moving Path Optimization of Human Motion Robots Based on FA-DWA Fusion Algorithm
To further improve the quality of path planning for mobile robots,a path planning method for mobile robots is proposed based on an improved firefly algorithm combined with the dynamic window(iFA-DWA)algorithm.Among them,the global path planning algorithm based on the firefly algorithm is further improved,and the dynamic window algorithm is used as the local path plan-ning algorithm.Finally,the two algorithms are fused to further improve the quality of path planning.The experimental results show that compared with traditional global path planning algorithms,the iFA-DWA fusion algorithm can obtain better mobile paths,shorter path lengths,and better overall planning effects;In actual path planning tests,the path planning method based on the iFA-DWA fu-sion algorithm has the best planned path quality,shorter algorithm running time,and can effectively avoid unknown obstacles in the path.Overall,the path planning method based on the iFA-DWA fusion algorithm has good performance and can perform high-quality path planning.When applied to the path planning of mobile robots,it can effectively optimize the movement process and has high fea-sibility.

mobile robotspath planningfirefly algorithmdynamic window algorithm

骞虎

展开 >

西北大学现代学院,西安 710130

人体运动机器人 路径规划 萤火虫算法 动态窗口算法

陕西省体育局

2022376

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(8)