首页|基于虚拟仿真技术的视觉三维重建算法研究

基于虚拟仿真技术的视觉三维重建算法研究

扫码查看
虚拟仿真技术可以以极低的成本在虚拟环境中测试自动驾驶算法性能,为了进一步保障自动驾驶汽车的安全,研究设计并实现了一个基于卷积神经网络的多任务学习模型,用来提取图像特征,并输出点云数据,然后将点云数据处理为包含高度、强度和密度的三通道鸟瞰图,将模型在鸟瞰图中的预测结果映射回三维空间得到三维目标检测结果,最后根据语义分割结果在合适位置进行渲染,从而实现真实驾驶场景的三维重建.结果表明,研究所提模型在进行 50 次迭代学习后已经趋于稳定,模型精度平均达到了 96%左右,在 3 种模型中的精度分别为 48.13%和 62.43%,75.69%,帧率为 25,优于另外 3 种模型.此次研究提出的方法在复杂情况下,可以实现具有完备的结构和丰富细节纹理三维重建模型,并能对多种对象进行良好的建模.
Research on 3D visual reconstruction algorithm based on virtual simulation technology
Virtual simulation technology can test the performance of automatic driving algorithm in a virtual environment at a very low cost.In order to further ensure the safety of autonomous vehicle,a multi task learning model based on convolutional neural network is designed and implemented,which is used to extract image features and output point cloud data.Then,the point cloud data is pro-cessed into a three channel aerial view containing height,intensity and density.The prediction results of the model in the aerial view are mapped back to 3D space to obtain 3D target detection results.Finally,the results are rendered at the appropriate location accord-ing to the semantic segmentation results,so as to achieve 3D reconstruction of the real driving scene.The results show that the pro-posed model has tended to be stable after 50 iterations of learning,and the average accuracy of the model reaches about 96%.The ac-curacy of the three models is 48.13%,62.43%,75.69%,and the frame rate is 25,which is better than the other three models.The method proposed in this study can realize 3D reconstruction model with complete structure and rich details in complex cases,and can model a variety of objects well.

virtual simulationthree-dimensional reconstructionfeature extractionobject detection

颜昌

展开 >

长沙师范学院,长沙 410000

虚拟仿真 三维重建 特征提取 目标检测

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(11)