首页|基于连续词袋模型的神经机器翻译模型优化研究

基于连续词袋模型的神经机器翻译模型优化研究

扫码查看
在全球化的背景下,机器翻译模型对于促进各国文化交流具有重要意义.针对神经机器翻译模型的错译和漏译问题,研究搭建了基于连续词袋模型和改进长短期记忆网络的神经机器翻译模型.结果表明,所提模型的双语评估替补值在英-法数据集中可达到 39.49%.在法语、德语和西班牙语 3 种语言翻译成英文的翻译任务中准确率分别为 79.2%、75.1%和 76.7%,在英语翻译成其他语言中的准确率分别为 79.8%、77.6%和 78.7%.研究结果显示,所提模型具有较高的翻译性能和准确性,能够对Transformer神经机器翻译模型进行合理有效的优化,且在不同语言的翻译任务中均具有较好的适应性,具有一定的可行性和实际应用前景.研究能够为英文翻译提供一定的技术支持,促进跨文化传播以及跨国贸易的深入开展.
Optimization of Neural Machine Translation Model Based on Continuous Bag of Words
In the context of globalization,machine translation models are of great significance in promoting cultural exchange a-mong countries.A neural machine translation model based on continuous word bag model and improved long short-term memory net-work was studied and constructed to address the issues of mistranslation and omission in neural machine translation models.The results indicate that the bilingual evaluation substitute value of the proposed model can reach 39.49%in the English French dataset.The ac-curacy rates for translating from French,German,and Spanish into English were 79.2%,75.1%,and 76.7%,respectively.The ac-curacy rates for translating from English to other languages were 79.8%,77.6%,and 78.7%,respectively.The research results show that,the proposed model has high translation performance and accuracy,can effectively optimize the Transformer neural machine translation model,and has good adaptability in translation tasks in different languages.It has certain feasibility and practical applica-tion prospects.Research can provide certain technical support for English translation,promote cross-cultural communication,and deepen cross-border trade.

neural machine translationcontinuous word bag modellong short-term memory networkEnglish translation

李珍

展开 >

西安城市建设职业学院,西安 710114

神经机器翻译 连续词袋模型 长短期记忆网络 英语翻译

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(11)