首页|基于卷积神经网络的教育机器人智能AR教学系统与人机交互

基于卷积神经网络的教育机器人智能AR教学系统与人机交互

扫码查看
对基于卷积神经网络的教育机器人智能AR教学系统与人机交互进行研究,提出一种基于改进HRNet网络的手部姿态估计方法提高机器人智能AR教学系统对用户手势进行识别的速度与准确率.首先,在常用的人机交互流程的基础上,对提高机器人系统指令识别正确率方法的整体框架进行设计,然后根据HRNet网络的缺点进行改进,即采用Ghost模块对HRNet网络结构中的传统卷积进行代替,解决了HRNet网络计算量大、运算复杂的问题;同时在HRNet网络残差结构中融入ECA-Net模块,进一步增强了网络模型对手部姿态特征信息的学习能力.实验结果显示:提出的基于改进HRNet网络的手部姿态估计方法具有可行性、有效性,且能够快速、精准地实现特征信息的提取,完成手部姿态估计任务,为教育机器人智能AR教学系统提供了更为高效的人机交互技术.
Convolutional neural network-based intelligent AR teaching system for educational robots and human-computer interaction
In this paper,the intelligent AR teaching system of educational robots based on convolutional neural networks and hu-man-computer interaction are studied,and a hand pose estimation method based on improved HRNet network is proposed to improve the speed and accuracy of the intelligent AR teaching system of robots to recognize user gestures.Firstly,on the basis of the commonly used human-computer interaction process,the overall framework of the method for improving the accuracy of instruction recognition of robot system in this paper is designed,and then improved according to the shortcomings of HRNet network,that is,the Ghost module is used to replace the traditional convolution in the structure of HRNet network,which solves the problem of large computational cost of HRNet network.At the same time,the ECA-Net module is integrated into the residual structure of HRNet network,which further enhances the learning ability of the network model to learn the hand pose feature information.The experimental results show that the hand pose estimation method based on the improved HRNet network proposed in this paper is feasible and effective,and can quickly and accurately extract feature information and complete the hand pose estimation task,which provides a more efficient human-com-puter interaction technology for the intelligent AR teaching system of educational robots.

educational robotsintelligent AR teaching systemhuman-computer interactionHRNet Networkhand pose esti-mation

陈静漪、肖娜

展开 >

河海大学,南京 211100

教育机器人 智能AR教学系统 人机交互 HRNet网络 手部姿态估计

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(11)