首页|基于深度学习的行人跨镜智能追踪技术研究

基于深度学习的行人跨镜智能追踪技术研究

扫码查看
行人跨镜追踪技术旨在跨摄像机的复杂场景下,从多个无交集监控视频中提取出同一个行人目标,具有重要的实际应用价值.在现有行人跨镜追踪技术研究中,行人目标的局部特征易受外界光照条件、背景环境、人员角度、人体姿态及遮挡程度等因素干扰.针对该问题,提出一种基于改进型多特征融合的行人跨镜追踪方法,在Yolov8 目标检测算法的基础上,利用SGHM人体区域抠图算法,提取人体区域,剔除无用的背景信息;并加入自适应多特征融合网络设计,增强了行人关键特征的融合紧密性,提升了目标匹配的准确率.通过实验证明,该方法在数据集Market1501 上,其评估指标mAP和Rank-1均取得显著提升.
Research on Intelligent Tracking Technology of Pedestrian Crossing Mirror Based on Deep Learning
Pedestrian cross-camera tracking technology aims to extract the same pedestrian target from multiple disjoint surveil-lance videos in complex cross-camera scenarios,and has important practical application value.In the existing research on pedestrian cross-mirror tracking technology,the local characteristics of pedestrian targets are easily interfered by factors such as external lighting conditions,background environment,person angle,human body posture,and occlusion degree.To address this problem,this paper proposes a pedestrian cross-mirror tracking method based on improved multi-feature fusion.Based on the Yolov8 target detection algo-rithm,the SGHM human body area matting algorithm is used to extract the human body area and eliminate useless background infor-mation;and add The adaptive multi-feature fusion network design enhances the tightness of the fusion of key pedestrian features and improves the accuracy of target matching.Experiments have shown that this method has significantly improved its evaluation indicators mAP and Rank-n on the data set Market1501.

deep learningpedestrian re-recognitionintelligent tracking across mirrors

边志宏、马学涛、邵云芝、张胜娜、任青茂

展开 >

国能铁路装备有限责任公司,北京 100120

中铁工程设计咨询集团有限公司,北京 100055

四川弘方轨道交通科技有限公司,成都 610000

深度学习 行人重识别 多特征融合 跨镜智能追踪

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(11)