首页|基于爬虫技术和智能语音问答算法的智能语言学习系统实现

基于爬虫技术和智能语音问答算法的智能语言学习系统实现

扫码查看
为解决语言学习资源获取困难的问题,研究通过爬虫技术从互联网上搜集和整理语言学习资源,并利用贝叶斯网络模型进行数据挖掘和处理,结合深度学习技术构建了语音问答模型,并以此构建智能语言学习系统.实验结果表明,相比于基于R语言的网页抓取与数据收集方法,研究方法的数据处理能力评分提升了约24%.基于相似度计算模型的智能语音问答算法的准确率最高可达 93%.智能语言学习系统使用时间达到 8 小时后,志愿者的学习效率可达 94%,相比于系统使用前,志愿者学习效率提升了约 19%.研究表明,基于爬虫技术和智能语音问答算法的智能语言学习系统,可以帮助用户学习和提高语言技能,提高学习兴趣和效果.
Implementation of an Intelligent Language Learning System Based on Crawler Technology and Intelligent Voice Q&A Algorithm
In order to solve the problem of difficulty in accessing language learning resources,this study collected and organized language learning resources from the Internet through web scraping technology,and used Bayesian network models for data mining and processing.Combined with deep learning technology,a voice question answering model was constructed,and an intelligent language learning system was constructed based on this.The experimental results show that compared to the web crawling and data collection methods based on R language,the data processing ability score of the research method has been improved by about 24%.The accuracy of the intelligent voice question answering algorithm based on similarity calculation model can reach up to 93%.After using the intelli-gent language learning system for 8 hours,the learning efficiency of volunteers can reach 94%,which is about 19%higher than before using the system.Research has shown that intelligent language learning systems based on web scraping technology and intelligent voice question answering algorithms can help users learn and improve language skills,enhance learning interest and effectiveness.

crawler technologyvoice question answering algorithmlanguage learningdata miningcosine similarity

伊阳超

展开 >

西安海棠职业学院,西安 710038

爬虫技术 语音问答算法 语言学习 数据挖掘 余弦相似度

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(11)