首页|基于改进Yolov5的电力设备碳足迹诊断系统研究

基于改进Yolov5的电力设备碳足迹诊断系统研究

扫码查看
随着全球碳排放问题日益凸显,电力设备的碳足迹诊断与控制成为关键议题.传统的碳足迹诊断方法面临数据获取难、诊断准确性不足等问题.因此,研究提出了一种融合潮流追踪的Yolov5 电力设备碳足迹诊断系统模型.结果表明,提出模型的平均正确率为 84.91%、碳足迹检测平均时延为 7.16 s,提出模型性能明显高于对照模型.相比于传统的碳足迹诊断方法,该系统在准确性、实时性和处理效率方面均有了显著的提升.提出模型在准确性方面表现出了明显的优势.此外该模型能够更加准确地预测碳足迹的变化趋势,并通过潮流追踪实时监测电气设备碳足迹的变化,为环保决策提供了更加可靠的数据支持.同时,该研究的方法和思路也为人工智能在环保领域的应用提供了新的可能.
Research on Carbon Footprint Diagnosis System for Power Equipment Based on Improved Yolov5
With the increasingly prominent global carbon emissions issue,carbon footprint diagnosis and control of power equip-ment has become a key issue.Traditional carbon footprint diagnosis methods face difficulties in data acquisition and insufficient diag-nostic accuracy.Therefore,the study proposes a Yolov5 power equipment carbon footprint diagnosis system model that integrates power flow tracking.The results show that the average accuracy of the proposed model is 84.91%,and the average delay of carbon footprint detection is 7.16s.The performance of the proposed model is significantly higher than that of the control model.Compared to tradition-al carbon footprint diagnosis methods,this system has significantly improved in accuracy,real-time performance,and processing effi-ciency.The proposed model has shown significant advantages in terms of accuracy.In addition,this model can more accurately predict the trend of carbon footprint changes and monitor the changes in carbon footprint of electrical equipment in real time through trend tracking,providing more reliable data support for environmental decision-making.At the same time,the methods and ideas of this study also provide new possibilities for the application of artificial intelligence in the field of environmental protection.

Yolov5carbon footprintpower equipmentcurrent tracking method

窦如婷、喇元、刘沁莹、韦嵘晖、周育忠

展开 >

南方电网科学研究院有限责任公司,广州 510663

中国南方电网有限责任公司,广州 510663

Yolov5 碳足迹 电力设备 潮流追踪法

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(11)