首页|蒙特卡洛定位算法融合灰色理论的巡检机器人预警方法

蒙特卡洛定位算法融合灰色理论的巡检机器人预警方法

扫码查看
传统的变电站设备检测方法主要依靠人力资源,但当下,针对当前变电站巡检无人化的场景,结合变电站的内部环境特征、设备故障预警需求,提出蒙特卡洛定位算法融合灰色理论的变电站巡检机器人预警系统.为克服传统蒙特卡洛算法中机器人绑架和粒子数固定问题,提出自适应蒙特卡洛定位算法,对巡检机器人位置实时定位.克服大数据需要大量训练数据的弊端,选取对数据量要求较低的灰色预警算法,对电力设备故障进行预警.进而提出蒙特卡洛定位算法融合灰色理论的巡检机器人预警方法.通过真实场景下的路径规划,与绝缘设备状态监测实验,证明了提出的方法能有效实时返回巡检路径与设备状态巡检任务.
Early warning method for inspection robot based on Monte Carlo positioning algorithm and grey theory
Traditional substation equipment detection methods mainly rely on human resources,but at present,in view of the cur-rent unmanned scene of substation inspection,combined with the internal environment characteristics of substation and equipment fault early warning requirements,a substation inspection robot early warning system based on Monte Carlo positioning algorithm and gray theory is proposed.In order to overcome the problems of robot kidnapping and fixed particle number in traditional Monte Carlo al-gorithm,an Adaptive Monte Carlo localization algorithm is proposed to locate the position of inspection robot in real time.In order to overcome the disadvantage that big data needs a lot of training data,the grey early warning algorithm with low data requirement is se-lected to early warn the power equipment failure.Then,a warning method of inspection robot based on Monte Carlo positioning algo-rithm and grey theory is proposed.Through the real scene path planning and insulation equipment condition monitoring experiments,it is proved that the proposed method can effectively return the inspection path and equipment condition inspection task in real time.

monte carlo positioninggray theoryinspection robotunmanned scene

孙明涛、高磊、丁恒、张晓良

展开 >

华北电力大学,北京 102206

北京服装学院,北京 100029

蒙特卡洛定位 灰色理论 巡检机器人 无人化场景

2024

自动化与仪器仪表
重庆工业自动化仪表研究所,重庆市自动化与仪器仪表学会

自动化与仪器仪表

CSTPCD
影响因子:0.327
ISSN:1001-9227
年,卷(期):2024.(11)