首页|厚规格高强钢低温卷取温度滤波算法的开发及应用

厚规格高强钢低温卷取温度滤波算法的开发及应用

扫码查看
针对某钢厂2 150 mm热轧产线厚规格高强钢低温卷取时卷取温度(Coiling Temperature,CT)实测值波动大,CT反馈控制及模型自学习功能无法正常投入的问题,基于限幅滤波法及卡尔曼滤波法开发了一种新型的组合式滤波算法.对比分析了 3种典型组合算法,发现与限幅加权平滑滤波和限幅递推平均值滤波算法相比,限幅卡尔曼滤波算法在噪声环境下保证良好鲁棒性的同时,提高了 CT实测值的真实性和可靠性.将限幅卡尔曼滤波算法嵌入现有层流冷却控制系统,实现了低温卷取条件下CT值的准确测量,确保了 CT控制功能的正常投入.优化后的控制系统在生产X80管线钢时,实际CT值能够控制在目标温度±30 ℃以内,取得了良好的应用效果.
Development and application of filtering algorithm for low coiling temperature of thick gauge high strength steel
Aiming at the problem that the measured value of coiling temperature(CT)fluctuates greatly and the CT feedback con-trol and model self-learning function cannot be put into normal operation during the low temperature coiling of thick gauge high strength steel in a 2 150 mm hot rolling production line,a new combined filtering algorithm based on limiting filtering method and Kalman filtering method was developed.Three typical combination algorithms were compared and analyzed.Compared to the Limiting Weighted Smooth Filtering and Limiting Recursive Average Filtering algorithms,it was found that the Limiting Kalman Filtering algorithm improved the authenticity and reliability of CT measurements while ensuring good robustness in noisy envi-ronments.The Limiting Kalman Filtering algorithm was embedded into the existing laminar cooling control system,which real-ized the accurate measurement of the CT values under the low temperature coiling condition and ensured the normal input of the CT control function.When the optimized control system was used to produce X80 pipeline steel,the actual CT values can be controlled within the target temperature of±30 ℃,and good application results were achieved.

thick gauge high strength steellow temperature coilingcoiling temperature(CT)Limiting Kalman FilteringLim-iting Weighted Smooth FilteringLimiting Recursive Average Filtering

潘瑜、宁新禹、王麟、李海军

展开 >

东北大学轧制技术及连轧自动化国家重点实验室,辽宁 沈阳 110819

厚规格高强钢 低温卷取 卷取温度 限幅卡尔曼滤波 限幅加权平滑滤波 限幅递推平均值滤波

2024

轧钢
中国钢研科技集团有限公司

轧钢

CSTPCD北大核心
影响因子:0.881
ISSN:1003-9996
年,卷(期):2024.41(1)
  • 16