首页|线材斯太尔摩风冷过程相变动力学研究及温度场预测

线材斯太尔摩风冷过程相变动力学研究及温度场预测

扫码查看
线材轧后斯太尔摩风冷过程对其最终组织性能非常关键,而奥氏体相变与温度场的双向耦合是线材风冷过程温度场预测的一大难题.为此,对斯太尔摩风冷过程中线材温度场及相变进行了研究,建立了线材风冷过程的三维模型及相变动力学数学模型.采用CFD模拟的方法对换热系数进行求解,发现线材搭接点区域换热系数远小于非搭接点区域,并且搭接点区域换热系数随时间呈周期性变化.通过模拟计算得出线材同一截面上下表面换热系数相差70~100 W/(m2·K).采用有限差分法对线材相变动力学及线材在风冷条件下温度场的数学模型进行计算,得到线材温度场分布,发现线材在风冷过程中温差最大为30~50 ℃,与现场测量数据非常吻合,这表明模型可以用于工业生产线材风冷冷却过程温度场和相变过程的预测.
Study on phase transformation kinetics and temperature field prediction of wire circles in the Stelmor air-cooling process
The Stelmor air-cooling process after wire rolling is very critical to its final microstructure and properties,and the two-way coupling of austenite phase transformation and temperature field is a major problem in the temperature field prediction of wire air-cooling process.Therefore,the temperature field and phase transformation of wire during Stelmor air-cooling process were studied,and the three-dimensional model and phase transformation kinetic mathematical model of wire air-cooling process were established.The CFD simulation method was used to solve the heat transfer coefficient.It is found that the heat transfer coefficient of the wire lapping point region is much smaller than that of the non-lapping point region,and the heat transfer coeffi-cient of the wire lapping point region changes periodically with time.The difference of heat transfer coefficient between the upper and lower surfaces of the same section of the wire rod is 70-100 W/(m2·K).The finite difference method is used to calculate the mathematical model of the phase transformation kinetics and the temperature field of the wire under the air-cooling condition.The temperature field of the wire is obtained.It is found that the maximum temperature difference of the wire during the cooling process is 30-50 ℃,which is in good agreement with the field measurement data.This shows that the model can be used to predict the temperature field and phase transformation process of the air-cooling process of industrial production of wire circles.

wire circlesStelmor air-cooling lineconvective heat transfer coefficienttemperature fieldnumerical simulationphase transformation

赵千龙、苏福永、李斌、李存旺、范光炎

展开 >

北京科技大学能源与环境工程学院,北京 100083

线材 斯太尔摩风冷线 对流传热系数 温度场 数值模拟 相变过程

国家重点研发计划项目

2018YFB0605900

2024

轧钢
中国钢研科技集团有限公司

轧钢

CSTPCD北大核心
影响因子:0.881
ISSN:1003-9996
年,卷(期):2024.41(2)
  • 30