首页|云南省传染病医院接受抗病毒治疗艾滋病住院患者死亡风险模型构建

云南省传染病医院接受抗病毒治疗艾滋病住院患者死亡风险模型构建

扫码查看
目的 通过构建模型、检测艾滋病住院患者住院时的实验室指标和相关疾病来预测住院患者发生死亡的风险,从而提高预警、降低艾滋病住院患者的死亡风险,比较用均衡后数据构建模型的效果.方法 选取云南省传染病医院2018年 1月1日至2022年12月31日艾滋病住院患者,按照7∶3的比例分为训练集和验证集,分别构建预测模型和验证模型,绘制ROC曲线,利用最佳模型构建列线图,混淆矩阵对比均衡数据前后模型效果.结果 纳入患者3 198人,其中死亡患者有111人,患者合并有心血管疾病(CVD)、合并艾滋病相关淋巴瘤(ARL)、合并严重细菌感染(SBI)、年龄高、活化部分凝血酶时间(APTT)高、血清蛋白(ALB)低、肌酐(Cr)高、CD4细胞数量少、中性粒细胞比例(NEUT%)高、红细胞(RBC)量多是艾滋病患者死亡危险因素,构建预测模型在训练集和验证集上的ROC曲线下面积分别为0.903(95%CI:0.872~0.935)、0.805(95%CI:0.721~0.890),均衡数据后构建Logistic回归模型的效果改善不明显.结论 艾滋病住院患者年龄、APTT、ALB、Cr、CD4细胞、NEUT%、RBC数量,及是否合并CVD、SBI、ARL在死亡风险预测上具有较好的效能,Logistic回归模型对不均衡数据也较稳定.
Constructure of death risk model for AIDS inpatients receiving antiretroviral treatment at Yunnan Infectious Disease Hospital
Objective To estimate the risk of mortality among hospitalized AIDS patients by constructing models and analyzing laboratory parameters and comorbidities recorded during their inpatient episodes.This approach aims to enhance early warning systems and reduce mortality risks for hospitalized HIV patients.The effectiveness of model construction using balanced data was compared to determine the most efficient approach.Methods Samples of AIDS inpatients were chosen from January 1,2018,to December 31,2022,at Yunnan Infectious Diseases Hospital.These patients were then divided into training and validation sets with a ratio of 7:3,respectively.Predictive and validation models were constructed,ROC curves were plotted,and the optimal model was employed to create a column chart.Additionally,a comparison of model effects before and after balancing data was conducted using a confusion matrix.Results A total of 3 198 patients were included,of which 111 died.Patients with cardiovascular disease(CVD),AIDS-related lymphoma(ARL),severe bacterial infection(SBI),old age,elevated activated partial thrombin time(APTT),low albumin(ALB),high creatinine(Cr),low CD4 cell count,high neutrophil ratio(NEUT%),and a high red blood cell(RBC)number count were identified as risk factors for death in AIDS patients.The area under ROC(AUC)for constructing a prediction model on the training and validation sets was 0.903(95%CI:0.872-0.935)and 0.805(95%CI:0.721-0.890),respectively.However,the improvement in the performance of constructing a logistic regression model after balancing the data was not deemed significant.Conclusions The age of AIDS inpatients,APTT,ALB,Cr,CD4 cell count,NEUT%,RBC count,and the combination of CVD,SBI,and ARL demonstrate significant efficacy in predicting death risk.Additionally,the logistic regression model proves stables,even for unbalanced data.

HIV/AIDSin-hospital mortality riskprediction modelnomogramsimbalanced data

赵传宇、冯能能、马跃、王舒、张海霞、谢荣慧

展开 >

大理大学公共卫生学院,云南大理 671003

云南省传染病医院,昆明 650301

艾滋病 住院死亡风险 预测模型 列线图 不均衡数据

云南省科技厅科技重大专项云南省艾滋病病毒学及临床诊疗技术创新研究中心项目

202102AA310005

2024

中国艾滋病性病
中国性病艾滋病防治协会

中国艾滋病性病

CSTPCD北大核心
影响因子:1.292
ISSN:1672-5662
年,卷(期):2024.30(3)
  • 23