首页|基于Box-Cox变换和随机系数回归的非线性退化数据建模方法

基于Box-Cox变换和随机系数回归的非线性退化数据建模方法

扫码查看
变换方法是处理设备非线性退化建模与剩余寿命预测的一种重要方式和可行途径,目前常见的变换方法主要为对数变换和时间尺度变换,其适用范围有限.鉴于此,文章提出一种基于Box-Cox变换(Box-Cox transformation,BCT)的非线性退化数据建模方法.首先,采用BCT对非线性退化数据进行变换,将变换后的退化数据通过线性随机系数回归模型进行建模.然后,通过构建观测数据的概率密度函数,利用极大似然估计对于BCT中的模型参数进行辨识,并运用Bayesian理论对参数进行在线更新实现退化模型的动态校准.最后,分析经过BCT后的锂电池和轴承实际退化数据,其线性度与相关系数最高分别提升 69.63%、9.19%,证明文章方法可行,具有潜在的工程应用价值.
Nonlinear degradation data modeling method based on Box-Cox transformation and random coefficient regression model
Transformation method is an important and feasible way to deal with nonlinear degradation modeling and life prediction of equipment.At present,the common transformation methods are mainly logarithmic transformation and time scale transformation,and their application scope is limited.In view of this,this paper proposes a nonlinear degradation data modeling method based on Box-Cox transformation(BCT).Firstly,the nonlinear degradation data are transformed by BCT,and the transformed degradation data are modeled by linear random coefficient regression model.Then,by constructing the probability density function of the observation data,the maximum likelihood estimation is used to identify the model parameters in BCT,and Bayesian theory is used to update the parameters online to realize the dynamic calibration of the degradation model.Finally,the actual degradation data of lithium battery and bearing after BCT are analyzed,and the linearity and correlation coefficient are increased by 69.63%and 9.19%respectively,which verifies the feasibility and potential engineering application value of this method.

nonlinear degradationBox-Cox transformation(BCT)random coefficient regressiononline update

杨保奎、李天梅、张建勋、司小胜

展开 >

火箭军工程大学导弹工程学院,陕西 西安 710025

非线性退化 Box-Cox变换 随机系数回归 在线更新

国家自然科学基金项目国家自然科学基金项目

6223301762073336

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(1)
  • 8