首页|引入人员反馈的风机叶片红外缺陷测量技术

引入人员反馈的风机叶片红外缺陷测量技术

扫码查看
在实现风机叶片巡检的无人化和智能化的过程中,数据集的准备与标注严重影响深度学习网络的预测准确性.这一点在基于无人机载红外热成像尤为重要,不同于可见光检测:由于红外相机像素有限,导致缺陷在检测图像上像素少、温差小、缺陷温度表征因缺陷种类变化等问题.仅依赖一次数据标定的网络识别准确率较低,且数据集标注的差异对识别精度带来严重影响.为此,提出基于人在回路的风机叶片智能红外缺陷检测与测量的方法,将人员反馈引入到网络性能迭代中,并且通过缺陷局部假设解决在缺陷面积测量中的温度表征随种类变化的问题.实验表明,引入人为参与的方法能有效地提高风机叶片缺陷检测识别率.在自制的风机叶片红外数据集中,第二次数据迭代的mAP@0.5比第一次数据标注提高22.94%,第三次数据迭代的mAP@0.5比第二次数据迭代提高27.8%.
Measurement technology of wind turbine blades infrared defect with human feedback introduced
In the process of achieving unmanned and intelligent inspection of wind turbine blades,the preparation and labeling of data sets seriously affects the prediction accuracy of deep learning networks.This is particularly important in unmanned airborne infrared-based thermal imaging,unlike visible light inspection:the limited pixels of the infrared camera lead to problems such as fewer pixels on the inspection image,small temperature difference,and defect temperature characterization varying by defect type.The accuracy of network recognition relying on only one data calibration is low,and the difference in data set labeling brings serious impact on recognition accuracy.To this end,a human-in-the-loop-based method for intelligent infrared defect detection and measurement of wind turbine blades is proposed,which introduces human feedback into the network performance iteration and solves the problem of temperature characterization varying with species in defect area measurement by defect localization assumption.The experiments show that the introduction of human participation can effectively improve the recognition rate of wind turbine blade defect detection.In the homemade infrared dataset of wind turbine blades,The mAP@0.5 of the second data iteration increased by 22.94%compared with the first data annotation,and the mAP@0.5 of the third data iteration increased by 27.8%compared with the second data iteration.

defect detectiondeep learningwind turbine bladesYOLOv5l modelhuman-in-the-loop

王洪金、杜旭、赵丽劼、何赟泽、李杰

展开 >

湖南大学电气与信息工程学院,湖南 长沙 410082

中国电建集团中南勘测设计研究院有限公司,湖南 长沙 410014

缺陷检测 深度学习 风机叶片 YOLOv5l模型 人在回路

国家自然科学基金国家自然科学基金广东省基础与应用基础研究基金海上风电联合基金湖南省科技创新领军人才湖南省杰出青年基金

61901167523770092022A15152400502023RC10392022JJ10017

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(1)
  • 8