首页|改进生成对抗网络水下图像增强方法

改进生成对抗网络水下图像增强方法

扫码查看
针对水下图像颜色失真和细节模糊的问题,提出一种基于改进生成对抗网络的水下图像增强方法.该方法将生成对抗网络作为基础架构,生成网络采用编码解码结构,并引入RGB颜色空间块、HSV颜色空间块和注意力机制;RGB块可以更好地去噪和去除偏色,HSV颜色空间可以调整水下图像的亮度、颜色和饱和度,最后生成网络通过分配权重来生成图像.判别网络采用类似马尔科夫判别器的结构.此外,通过构建全局相似和内容感知多项损失函数,使生成的图像在色彩、内容、结构上和参考图像保持一致.实验表明,所提出的方法在主观比较和客观指标上都有很好的表现.其中结构相似度、峰值信噪比、水下彩色质量评估和水下图像质量度量在合成水下图像测试集的平均值分别为 0.774 6、19.275 8、0.488 9和 3.312 4.在真实水下图像测试集的平均值分别为 0.900 0、24.263 6、0.449 9和3.161 9.在主观评价和客观评价指标上,综合比较,该文算法实验结果均优于对比算法.
Underwater image enhancement based on improved generative adversarial network
Aiming at the problems of color distortion and blurred details of underwater images,an underwater image enhancement algorithm based on improved generative adversarial network is proposed.The method uses the generative adversarial network as the basic structure,the generative network adopts the coding and decoding structure,and introduces the RGB color space block,the HSV color space block and the attention mechanism;the RGB block can better denoise and remove the color cast,and the HSV color space can adjust the brightness,color and saturation of the underwater image,and finally the generative network generates the image by assigning weights.The discriminant network adopts a structure similar to the Markov discriminator.Furthermore,by constructing global similarity and content-aware multinomial loss functions,the generated images are made consistent with reference images in terms of color,content and structure.Experiments show that the proposed method performs well on both subjective comparisons and objective metrics.Among them,the average values of structural similarity,peak signal-to-noise ratio,underwater color quality assessment and underwater image quality metrics in the synthetic underwater image test set are 0.774 6,19.275 8,0.488 9 and 3.312 4.The average values on the test set of real underwater images are 0.900 0,24.263 6,0.449 9 and 3.161 9.In terms of subjective evaluation and objective evaluation indicators,generally speaking,the experimental results of the algorithm in this paper are better than those of the comparison algorithm.

underwater imagesgenerative adversarial networkscolor spaceattention mechanism

陈海秀、陆康、何珊珊、房威志、黄仔洁

展开 >

南京信息工程大学自动化学院,江苏 南京 210044

南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏 南京 210044

水下图像 生成对抗网络 颜色空间 注意力机制

国家自然科学基金江苏省研究生科研与实践创新计划项目

61302189SJCX23_0383

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(1)
  • 2