首页|引入注意力机制时空深度神经网络的再热器温度偏差预测方法

引入注意力机制时空深度神经网络的再热器温度偏差预测方法

扫码查看
锅炉再热器是将低压蒸汽再进行加热至一定温度的蒸汽过热器,其稳定运行对于燃煤机组的安全和高效生产具有重要意义.在锅炉运行过程中,由于炉膛出口和水平烟道中存在残余旋转动量,造成再热器两侧出口温度产生偏差,偏差过大时有可能导致爆管事故的发生.为实现再热器温度偏差的提前预测,设计一种基于注意力机制的时空融合深度神经网络模型,分别采用卷积神经网络和门控循环神经网络提取空间和时间信息,同时引入注意力机制对各类特征进行赋权,以提升预测精度.该模型同时发挥卷积神经网络在空间信息处理和门控循环神经网络在时间信息处理方面的优势,并充分利用特征图上通道注意力机制的全局信息,解决单个模型特征信息提取不充分问题.在燃煤电厂实际数据中的应用结果表明,与其他深度学习方法相比,所提出的方法具有更高的预测精度,其均方根误差、决定系数、预测准确率分别为0.962、1.342、0.985.
Prediction method of reheater temperature deviation based on attention mechanism spatiotemporal deep neural network
Boiler reheater is a steam superheater that reheats low-pressure steam to a certain temperature.Its stable operation is of great significance to the safe and efficient operation of coal-fired units.During the operation of the boiler,due to the residual rotational momentum in the furnace outlet and the horizontal flue,the outlet temperature on both sides of the reheater is deviated,and if the deviation is too large,a tube burst accident may occur.In order to realize the advance prediction of the temperature deviation of the reheater,this paper designs a spatiotemporal fusion deep neural network model based on the attention mechanism.The convolutional neural network and the gated recurrent neural network are used to extract the spatial and temporal information,and at the same time,the attention is introduced.The mechanism assigns weights to various features to improve prediction accuracy.The model also takes advantage of the convolutional neural network in spatial information processing and the gated recurrent neural network in temporal information processing,and makes full use of the global information of the channel attention mechanism on the feature map,solving the problem of single model feature information extraction.sufficient question.The application results on real data of coal-fired power plants show that the proposed method has higher prediction accuracy compared with other deep learning methods,the root mean square error,coefficient of determination,and prediction accuracy were 0.962,1.342 and 0.985,respectively.

reheater temperature deviation predictionconvolutional neural networkgated recurrent neural networkattention mechanism

武晨雨、陶银罗、曾九孙

展开 >

中国计量大学计量测试工程学院,浙江 杭州 310018

绍兴文理学院元培学院,浙江 绍兴 312000

杭州师范大学数学学院,浙江 杭州 311121

再热器温度偏差预测 卷积神经网络 门控循环神经网络 注意力机制

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(1)
  • 9