首页|基于LSTM网络的IGBT寿命预测方法研究

基于LSTM网络的IGBT寿命预测方法研究

扫码查看
针对IGBT工作时承受热应力与电应力循环冲击导致疲劳失效的问题,提出一种基于长短期记忆(LSTM)网络的寿命预测方法.利用NASA预测中心提供的加速老化数据集,分析并选取集电极-发射极的瞬态尖峰电压作为失效特征参数,通过Matlab构建LSTM网络,采用Adam优化算法来训练网络,实现对失效特征参数数据的预测,并选取三项性能评估指标与ARIMA模型及ELMAN神经网络模型的预测进行对比分析.结果显示,LSTM网络模型预测的均方根误差为 0.0476,平均绝对误差为 0.0322,平均绝对百分误差为 0.4917%,LSTM网络模型的预测精度更高,能够更好地实现IGBT的寿命预测,也对其他电力电子器件的寿命预测有一定的参考价值.
Research on IGBT life prediction based on LSTM network
To solve the problem of fatigue failure caused by cyclic impact of thermal stress and electrical stress during IGBT operation,a life prediction method based on long and short term memory(LSTM)network is proposed.Using NASA's forecast center provides the accelerated aging of data sets,analysis and selection of collector to emitter transient peak voltage as failure characteristic parameters of LSTM network built by Matlab,Adam optimization algorithm is used to train network,order to predict failure characteristic parameter data,and selected three performance evaluation indicators and ARIMA model and ELMAN neural network model of prediction were analyzed.The results show that the RMS error of LSTM network model is 0.0476,the average absolute error is 0.0322,and the average absolute percentage error is 0.4917%.The prediction accuracy of LSTM network model is higher,which can better realize the life prediction of IGBT,and has certain reference value for the life prediction of other power electronic devices.

insulated gate bipolar transistorlong short-term memory networklife predictiondeep learning

史业照、郭斌、郑永军

展开 >

中国计量大学计量测试工程学院,浙江杭州 310018

绝缘栅双极型晶体管 长短期记忆网络 寿命预测 深度学习

国家自然科学基金面上项目工信部2018年智能制造新模式应用项目浙江省重点研发项目

51775530Z1350600090022017C01G2080224

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(2)
  • 1
  • 13