首页|视觉表面缺陷无监督学习检测方法研究进展

视觉表面缺陷无监督学习检测方法研究进展

扫码查看
视觉表面缺陷检测是工业生产质量控制重要环节,其中无监督学习范式检测方法是重要的发展趋势.该文针对视觉表面缺陷无监督学习检测方法在工业生产、质量控制中的实际应用问题,系统介绍目前国内外的主要物体表面缺陷数据集以及缺陷视觉检测方法主要评价指标,评述图像重建范式、生成模型范式、特征嵌入范式在视觉表面缺陷无监督学习检测中的分类、基本原理及框架、应用性能等方面内容,总结比较各种方法的应用特点以及技术发展趋势,指出归一化流模型、预训练大模型等无监督视觉表面缺陷检测研究值得关注.
Research progress on unsupervised learning detection methods for visual surface defects
Visual surface defect detection is an important part of industrial production and quality control,in which the unsupervised learning paradigm of detection methods is an important development trend.This paper addresses the problem of unsupervised learning detection methods for visual surface defects in industrial production,quality control practical applications,and systematically introduces the current domestic and foreign major object surface defects dataset as well as defects in the visual detection method of the main evaluation index.Reviews the classification,fundamentals and framework,and application performance of the image reconstruction paradigm,generative model paradigm,and feature embedding paradigm for unsupervised learning detection of visual surface defects.This paper summarizes and compares the application characteristics of various methods and the development trends of technology,and points out that research on unsupervised visual surface defect detection such as normalized flow models and pre-trained large models deserves attention.

unsupervised learningsurface defectvisual inspection

刘桂雄、闫奕樸、邢星奥

展开 >

华南理工大学机械与汽车工程学院,广东广州 510640

无监督学习 表面缺陷 视觉检测

广东省重点领域研发计划

2019B010154003

2024

中国测试
中国测试技术研究院

中国测试

CSTPCD北大核心
影响因子:0.446
ISSN:1674-5124
年,卷(期):2024.50(3)
  • 55